共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel class of organic D-π-A dyes employing macrocyclic triphenylamine dimer as electron donor was designed and synthesized for dye-sensitized solar cells. The prepared compounds showed high chemical and elelctrochemical stabilities as well as good long-wave absorption. Photovoltaic devices based on these dyes showed high open circuit voltage (higher than that of N3) and achieved a solar energy to electricity conversion efficiency of 6.31%. All the performances indicate the dyes containing macrocyclic triphenylamine dimer is a good candidate for dyes sensitized solar cells. 相似文献
2.
We report here on the synthesis and photophysical/electrochemical properties of a series of novel starburst triarylamine-based organic dyes (S1, S2, S3, and S4) as well as their application in dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). For the four designed dyes, the starburst triarylamine group and the cyanoacetic acid take the role of electron donor and electron acceptor, respectively. It was found that the introduction of starburst triarylamine group to form the D-D-pi-A configuration brought about superior performance over the simple D-pi-A configuration, in terms of bathochromically extended absorption spectra, enhanced molar extinction coefficients and better thermo-stability. Moreover, the HOMO and LUMO energy levels tuning can be conveniently accomplished by alternating the donor moiety, which was confirmed by electrochemical measurements and theoretical calculations. The DSSCs based on the dye S4 showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 85%, a short-circuit photocurrent density (J(sc)) of 13.8 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.63 V, and a fill factor (ff) of 0.69, corresponding to an overall conversion efficiency of 6.02% under 100 mW cm(-2) irradiation. This work suggests that the dyes based on starburst triphenylamine donor are promising candidates for improvement of the performance of the DSSCs. 相似文献
3.
Four new 5-phenyl-iminostilbene dyes (ISB-3–6) containing electron-withdrawing benzo-[c][1,2,5]thiadiazole have been designed and synthesized for use as DSSCs. Their absorption properties and electrochemical and photovoltaic performances have been investigated systematically. Among these dyes, DSSCs based on a dye containing benzo-[c][1,2,5]thiadiazole and benzene moieties (ISB-4) showed the best performance: a short-circuit photocurrent density (Jsc) of 13.69 mA cm−2, an open-circuit photovoltage (Voc) of 722 mV, and a fill factor (FF) of 0.71, which corresponds to a power conversion efficiency (PCE) of 6.71%, under optimized conditions. Additionally, long-term stability of the ISB-4 based DSSCs with ionic-liquid electrolytes was demonstrated under 1000 h of light soaking, the photovoltaic performance is up to 5.75%. The results suggest that 5-phenyl-iminostilbene containing dyes are promising candidates for application in DSSCs. 相似文献
4.
Novel organic dyes for efficient dye-sensitized solar cells 总被引:1,自引:0,他引:1
Two novel metal-free organic dyes containing thienothiophene and thiophene segments have been synthesized. Nano-crystalline TiO2 dye-sensitized solar cells were fabricated using these dyes as light-harvesting sensitizers, and a high solar energy-to-electricity conversion efficiency of 6.23% was achieved. 相似文献
5.
Hara K Wang ZS Sato T Furube A Katoh R Sugihara H Dan-Oh Y Kasada C Shinpo A Suga S 《The journal of physical chemistry. B》2005,109(32):15476-15482
We have developed oligothiophene-containing coumarin dyes fully functionalized for dye-sensitized nanocrystalline TiO(2) solar cells (DSSCs). DSSCs based on the dyes gave good performance in terms of incident photon-to-current conversion efficiency (IPCE) in the range of 400-800 nm. A solar energy-to-electricity conversion efficiency (eta) of 7.4% was obtained with a DSSC based on 2-cyano-3-[5'-(1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-[2,2']bithiophenyl-5-yl]acrylic acid (NKX-2677) under simulated AM 1.5G irradiation (100 mW cm(-2)) with a mask: short-circuit current density (J(sc)) = 13.5 mA cm(-2); open-circuit voltage (V(oc)) = 0.71 V; fill factor (FF) = 0.77. Transient absorption spectroscopy measurements indicated that electron injection from NKX-2677 to the conduction band of TiO(2) is very rapid (<100 fs), which is much faster than the emission lifetime of the dye (1.0 ns), giving a highly efficient electron injection yield of near unity. 相似文献
6.
Hara K Kurashige M Ito S Shinpo A Suga S Sayama K Arakawa H 《Chemical communications (Cambridge, England)》2003,(2):252-253
We have developed an efficient and novel polyene-dye-sensitized nanocrystalline TiO2 solar cells producing a 6.8% solar energy-to-electricity conversion efficiency (eta) under AM 1.5 irradiation (100 mW cm(-2)): short-circuit current density (Jsc), 12.9 mA cm(-2), open-circuit photovoltage (Voc), 0.71 V, fill factor (ff), 0.74. 相似文献
7.
Optimizing dyes for dye-sensitized solar cells 总被引:3,自引:0,他引:3
Robertson N 《Angewandte Chemie (International ed. in English)》2006,45(15):2338-2345
Dye-sensitized solar cells (DSSCs) have emerged as an important cheap photovoltaic technology. Charge separation is initiated at the dye, bound at the interface of an inorganic semiconductor and a hole-transport material. Careful design of the dye can minimize loss mechanisms and improve light harvesting. Mass application of DSSCs is currently limited by manufacturing complexity and long-term stability associated with the liquid redox electrolyte used in the most-efficient cells. In this Minireview, dye design is discussed in the context of novel alternatives to the standard liquid electrolyte. Rapid progress is being made in improving the efficiencies of such solid and quasi-solid DSSCs which promises cheap, efficient, and robust photovoltaic systems. 相似文献
8.
以性能优良的三苯胺星射状分子WD8为母体,通过密度泛函理论方法,探讨了取代基团在不同位置时,对母体分子电子性质、光谱性质和电荷传输性能的影响.结果表明,取代基团位置的不同,对分子的前线分子轨道组成基本没有影响.当2-氰基-3-呋喃基-丙烯酸基团取代位置由对位变为间位时,分子的吸收范围最大.当2-氰基-3-呋喃基-丙烯酸基团和1个吩噻嗪-苯基团取代位置由对位变为间位时,分子的EHOMO最大,ELUMO和Eg最小,分子的最大吸收波长最长.当2-氰基-3-呋喃基-丙烯酸基团和2个吩噻嗪-苯基团取代位置由对位变为间位时,分子的电荷传输性能最强. 相似文献
9.
Kuang D Walter P Nüesch F Kim S Ko J Comte P Zakeeruddin SM Nazeeruddin MK Grätzel M 《Langmuir : the ACS journal of surfaces and colloids》2007,23(22):10906-10909
The co-sensitization of two organic dyes (SQ1 and JK2), which are complementary in their spectral responses, shows enhanced photovoltaic performance compared with that of an individual organic dye-sensitized solar cell. The power conversion efficiency of the co-sensitized organic dye solar cell based on the newly developed binary ionic liquid (solvent-free) electrolyte gives 6.4% under AM 1.5 sunlight at 100 mW/cm2 irradiation, which is higher than that of individual dye-sensitized solar cells. The incident monochromatic photon-to-current conversion efficiency (IPCE) of the co-sensitized solar cell shows typical absorption peaks at 530 and 650 nm corresponding to the two dyes and displays a broad spectral response over the entire visible spectrum with IPCE of >40% in the 400-700 nm wavelength domain. 相似文献
10.
New arylamine-based sensitizers for p-type dye-sensitized solar cells (DSSCs) have been synthesized and used for p-type DSSCs. The best conversion efficiency reaches ~0.1%. Sensitizers with two anchoring carboxylic acids lead to higher open-circuit voltages, short-circuit currents, and energy conversion efficiencies. 相似文献
11.
Wen-Jie Fan Dan Zhao Na Liu Da-Zhi Tan Yong-Gang Chen 《International journal of quantum chemistry》2020,120(8):e26147
Indacenodithiophene (IDT)-based high-efficiency photovoltaics have received increasing attention recently. This paper reports a density functional theory investigation of the electronic and optical properties of three IDT-based organic dyes together with the dye/(TiO2)46 interface. In order to enhance the photoelectric properties of IDT dyes, this paper considers two methods for the structure modification of the experimentally reported dye DPInDT (J. Org. Chem. 2011, 76, 8977): the extension of the conjugation length by dithienothiophene as well as the heteroatom substitution of the bridging atoms by electron-rich nitrogen atoms. Our calculations show that both methods obviously affect the distributions of the molecular orbitals and notably red shift the absorption peaks of around 20 nm, with the former method demonstrating enhanced light harvesting efficiency. The structure modifications proposed also enhance the emission spectrum properties for IDT-based organic dyes. The calculated ultrafast injection time of electrons from the excited state of IDT dyes to the (TiO2)46 belongs to the femtosecond order of magnitude, and is ideal for efficient photoelectric conversion process in dye-sensitized solar cells (DSSCs) applications. The IDT dyes designed in this paper have good electronic and spectroscopic properties. This study is expected to provide useful guidance for the development of novel IDT dyes for applications in DSSCs. 相似文献
12.
Horiuchi T Miura H Sumioka K Uchida S 《Journal of the American Chemical Society》2004,126(39):12218-12219
We now report metal-free organic dyes having a new type of indoline structure, which exhibits high efficiencies in dye-sensitized solar cells. The solar energy to current conversion efficiencies with the new indoline dye was 6.51%. Under the same conditions, the N3 dye was 7.89% and the N719 dye was 8.26%. The new indoline dye was optimized for the amount of 4-tert-butyl pyridine in the electrolyte and cholic acid as a coadsorbent. Subsequently, the solar energy to current conversion efficiencies reached 8.00%. This value was the highest obtained efficiency for dye-sensitized solar cells based on metal-free organic dyes without an antireflection layer. 相似文献
13.
《Journal of Energy Chemistry》2015,(6)
A series of new metal-free organic dyes that contain donors with triphenylamine or its derivatives and tetrazole-based acceptors were synthesized and characterized by photophysical, electrochemical, and theoretical computational methods. They were applied in nanocrystalline TiO_2 solar cells(DSSCs). It is found that the introduction of diphenylamine units as antennas in the as-synthesized dyes could improve photovoltaic performance compared with phenothiazine and carbazole units as antennas in DSSCs. The dye with(2H-tetrazol-5-yl) acrylonitrile electron acceptor also displayed the highest solar-to-electrical energy conversion efficiency. 相似文献
14.
A novel class of organic dyes containing pyrenoimidazole donors, cyanoacrylic acid acceptors, and oligothiophene π-linkers has been synthesized and characterized. The electro-optical properties of these dyes can be tuned by changing the conjugation length of the π-linkers. A dye containing terthiophene in the conjugation pathway exhibited a solar energy-to-electricity conversion efficiency of 5.65%. 相似文献
15.
A solar-to-electric conversion efficiency of 6.1% is achieved with this new dye, compared to 6.3% for N3 dye under the same experimental conditions. Although these indoline dyes are slightly less efficient than N3 dye, the cost of indoline dye is much less than for N3 due to ease of preparation. Furthermore, indoline dyes are shown to be highly stable to photoredox processes by cyclic voltammogram. 相似文献
16.
Sumit Chaurasia Yung-Chung Chen Hsien-Hsin Chou Yuh-Shen Wen Jiann T. Lin 《Tetrahedron》2012,68(38):7755-7762
A series of new organic dyes, comprising indenofluorene moiety as a conjugated bridge, with an extended π-groups, such as thiophene and furan, diphenylamine as donor, cyanoacrylic acid group as an electron acceptor and anchoring group, have been synthesized. Photophysical and electrochemical measurements, and theoretical computation were carried out on these dyes. Dye-sensitized solar cells (DSSCs) using these dyes as the sensitizers exhibited photocurrent density (JSC), open-circuit voltage (VOC), and fill factor (FF) in the range of 6.95–8.20 mA/cm2, 0.70–0.71 V, and 0.69–0.71, respectively, corresponding to an overall conversion efficiency of 3.36–4.05%. The best efficiency reached 56% of the standard cell based on N719. 相似文献
17.
Versatile dyes based on benzothiadiazole and benzoselenadiazole chromophores have been developed that perform efficiently in dye-sensitized solar cells. Power conversion efficiency of 3.77% is realized for a dye in which charge recombination is probably hindered by the nonplanar charge-separated structure. 相似文献
18.
Three donor-(π-spacer)-acceptor (D-π-A) organic dyes, containing different groups (triphenylamine, di(p-tolyl)phenylamine, and 9-octylcarbazole moieties) as electron donors, were designed and synthesized. Nanocrystalline TiO2 dye-sensitized solar cells were fabricated by using these dyes. It was found that the variation of electron donors in the
D-π-A dyes played an important role in modifying and tuning photophysical properties of organic dyes. Under standard global
AM 1.5 solar condition, the DSSC based on the dye D2 showed the best photovoltaic performance: a short-circuit photocurrent
density (J
sc
) of 13.93 mA/cm2, an open-circuit photovoltage (V
oc
) of 0.71 V, and a fill factor (FF) of 0.679, corresponding to solar-to-electric power conversion efficiency (η) of 6.72%.
Supported by the Key Project of Hunan Province of China (Grant No. 2008FJ2004), Natural Science Foundation of Hunan Province
of China (Grant Nos. 09JJ3020 & 09JJ4005), and Scientific Research Fund of Hunan Provincial Education Department (Grant No.
08C888). 相似文献
19.
Dye-sensitized solar cells(DSSCs) have attracted significant attention as alternatives to conventional silicon-based solar cells owing to their low-cost production,facile fabrication,excellent stability and high power conversion efficiency(PCE).The dye molecule is one of the key components in DSSCs since it significant influence on the PCE,charge separation,light-harvesting,as well as the device stability.Among various dyes,easily tunable phenothiazine-based dyes hold a large proportion and achieve impressive photovoltaic performances.This class of dyes not only has superiorly non-planar butterfly structure but also possesses excellent electron donating ability and large π conjugated system.This review summarized recent developments in the phenothiazine dyes,including small molecule phenothiazine dyes,polymer phenothiazine dyes and phenothiazine dyes for co-sensitization,especially focused on the developments and design concepts of small molecule phenothiazine dyes,as well as the correlation between molecular structures and the photovoltaic performances. 相似文献
20.
研究构建了三苯胺类化合物分子结构与相应染料敏化太阳能电池能量转化效率(PCE)之间的全息定量构效关系(HQSAR)模型。当fragment distinction、fragment size、hologram length和principal components分别为“C、DA”、“4-7”、“199”和“6”时,可以获得最优HQSAR模型。采用外部测试集验证和留一交叉验证对所建立模型进行检验,外部测试集验证中CCC和 Q2F3分别为0.933和0.892,留一交叉验证中其q2cv和r2分别为0.791和0.902,表明所建立模型具有较好的拟合效果和预测能力。通过所建立HQSAR模型的分子贡献图可知,环戊并二噻吩基团的存在有利于提高PCE值,长烷基链的存在可能降低PCE值。 相似文献