首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structures of the title 4‐chlorophenyl, (I), and 2‐chlorophenyl, (II), compounds, both C14H12ClNO2, have been determined using X‐ray diffraction techniques and the molecular structures have also been optimized at the B3LYP/6‐31 G(d,p) level using density functional theory (DFT). The X‐ray study shows that the title compounds both have strong intramolecular O—H...N hydrogen bonds and that the crystal networks are primarily determined by weak C—H...π and van der Waals interactions. The strong intramolecular O—H...N hydrogen bond is evidence of the preference for the phenol–imine tautomeric form in the solid state. The IR spectra of the compounds were recorded experimentally and also calculated for comparison. The results from both the experiment and theoretical calculations are compared in this study.  相似文献   

2.
X-ray analysis of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide reveals the temperature-dependent polymorphism associated with the crystallographic symmetry conversion. The observed crystal structure transformation corresponds to a symmetry reduction from I41 /a (I) to P43 (II) space groups. The phase transition mainly concerns the subtle but clearly noticeable reorganization of molecules in the crystal space, with the structure of individual molecules left almost unchanged. The Hirshfeld surface analysis shows that various intermolecular contacts play an important role in the crystal packing, revealing graphically the differences in spatial arrangements of the molecules in both polymorphs. The N-oxide oxygen atom acts as a formally negatively charged hydrogen bonding acceptor in intramolecular hydrogen bond of N–H…O? type. The combined crystallographic and theoretical DFT methods demonstrate that the observed intramolecular N-oxide N–H…O hydrogen bond should be classified as a very strong charge-assisted and closed-shell non-covalent interaction.  相似文献   

3.
The energies of intramolecular C-H…O, N-H…O, and O-H…O hydrogen bonds in model compounds are empirically estimated based on the values of the hydrogen bond induced weak-field shift of the bridging hydrogen atom signal in the 1H NMR spectrum. It is supported by a theoretical estimation of these energies based on the electron density value at the hydrogen bond critical point calculated within the QTAIM method. Good agreement between the empirical and theoretical estimates is found, which gives evidence of their reliability. It is shown that from the standpoint of their strength the intramolecular N-H…O and O-H…O hydrogen bonds can be classified as moderate whereas the intramolecular C-H…O hydrogen bonds must be classified as very weak interactions similar in their energy significance to van der Waals interactions.  相似文献   

4.
The crystal structures of the titlke compounds have been determined by X-ray diffraction. Urea, I crystallizes in the triclinic PI space group with cell dimensions a = 8.336(2), b = 11.009(2), c = 13.313(2) Å, α = 105.55(3), β = 103.62(3), γ = 104.63(3)° and Z = 2 final R value 0.072 for 2105 observations. Urea, II crystallizes in the orthorhombic P212121 space group with cell dimensions a = 8.750(2), b = 10.844(3) and c = 21.215(3) Å and Z = 4, final R value 0.083 for 599 observations. All the hydrogen atoms were located in the complex urea, I ; urea molecules form hydrogen bonded dimers about centers of symmetry, these dimers are sandwiched between macrocyclic rings forming one simple and one bifurcated hydrogen bond from the “endo” hydrogen atoms to the ether oxygen atoms. These units are held by hydrogen bonding between the urea molecules and carboxylic acids in two other units; these hydrogen bonds are cyclic involving eight atoms -(N-H(exo)…O(keto)-C-O-H…O(urea)-C)-. Only one carboxylic acid group per molecule takes part in these hydrogen bonds, the other forms a short, 2.490(7) Å, internal bond to the acceptor keto oxygen atom. N(H)…O bonds range from 2.930(7) to 3.206(7) Å, O(H)…O is 2.475(6) Å. In the complex urea, II each urea is hydrogen bonded to three different host molecules and vice versa; the urea “endo” hydrogen atoms bond to the ether oxygen atoms, while both “exo” hydrogen atoms take part in cyclic hydrogen bonds to carboxylic acids. There is not internal hydrogen bond. N(H)…O bonds range from 2.83 to 3.26(2) A and the O-…O bonds are 2.55 and 2.56(2) Å.  相似文献   

5.
6.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

7.
In the crystal structures of the title compounds, C11H9FN2O, (I), and C13H12FNO4, (II), the molecules are joined pairwise via different hydrogen bonds and the constituent pairs are crosslinked by weak C—H...O hydrogen bonds. The basic structural motif in (I), which is partially disordered, comprises pairs of molecules arranged in an antiparallel fashion which enables C—H...N[triple‐bond]C interactions. The pairs of molecules are crosslinked by two weak C—H...O hydrogen bonds. The constituent pair in (II) is formed by intramolecular bifurcated C—H...O/O′ and combined inter‐ and intramolecular N—H...O hydrogen bonds. In both structures, F atoms form weak C—F...H—C interactions with the H atoms of the two neighbouring methyl groups, the H...F separations being 2.59/2.80 and 2.63/2.71 Å in (I) and (II), respectively. The bond orders in the molecules, estimated using the natural bond orbitals (NBO) formalism, correlate with the changes in bond lengths. Deviations from the ideal molecular geometry are explained by the concept of non‐equivalent hybrid orbitals. The existence of possible conformers of (I) and (II) is analysed by molecular calculations at the B3LYP/6–31+G** level of theory.  相似文献   

8.
The synthesis and evaluation of the pharmacological activities of molecules containing the sulfonamide moiety have attracted interest as these compounds are important pharmacophores. The crystal structures of three closely related N‐aryl‐2,5‐dimethoxybenzenesulfonamides, namely N‐(2,3‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (I), N‐(2,4‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (II), and N‐(2,4‐dimethylphenyl)‐2,5‐dimethoxybenzenesulfonamide, C16H19NO4S, (III), are described. The asymmetric unit of (I) consists of two symmetry‐independent molecules, while those of (II) and (III) contain one molecule each. The molecular conformations are stabilized by different intramolecular interactions, viz. C—H…O interactions in (I), N—H…Cl and C—H…O interactions in (II), and C—H…O interactions in (III). The crystals of the three compounds display different supramolecular architectures built by various weak intermolecular interactions of the types C—H…O, C—H…Cl, C—H…π(aryl), π(aryl)–π(aryl) and Cl…Cl. A detailed Hirshfeld surface analysis of these compounds has also been conducted in order to understand the relationship between the crystal structures. The d norm and shape‐index surfaces of (I)–(III) support the presence of various intermolecular interactions in the three structures. Analysis of the fingerprint plots reveals that the greatest contribution to the Hirshfeld surfaces is from H…H contacts, followed by H…O/O…H contacts. In addition, comparisons are made with the structures of some related compounds. Putative N—H…O hydrogen bonds are observed in 29 of the 30 reported structures, wherein the N—H…O hydrogen bonds form either C (4) chain motifs or R 22(8) rings. Further comparison reveals that the characteristics of the N—H…O hydrogen‐bond motifs, the presence of other interactions and the resultant supramolecular architecture is largely decided by the position of the substituents on the benzenesulfonyl ring, with the nature and position of the substituents on the aniline ring exerting little effect. On the other hand, the crystal structures of (I)–(III) display several weak interactions other than the common N—H…O hydrogen bonds, resulting in supramolecular architectures varying from one‐ to three‐dimensional depending on the nature and position of the substituents on the aniline ring.  相似文献   

9.
Two series of a total of ten cocrystals involving 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine with various carboxylic acids have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine unit used for the cocrystals offers two ring N atoms (positions N1 and N3) as proton‐accepting sites. Depending upon the site of protonation, two types of cations are possible [Rajam et al. (2017). Acta Cryst. C 73 , 862–868]. In a parallel arrangement, two series of cocrystals are possible depending upon the hydrogen bonding of the carboxyl group with position N1 or N3. In one series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐bromothiophene‐2‐carboxylic acid (1/1), 1 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐chlorothiophene‐2‐carboxylic acid (1/1), 2 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2,4‐dichlorobenzoic acid (1/1), 3 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐aminobenzoic acid (1/1), 4 , the carboxyl hydroxy group (–OH) is hydrogen bonded to position N1 (O—H…N1) of the corresponding pyrimidine unit (single point supramolecular synthon). The inversion‐related stacked pyrimidines are doubly bridged by the carboxyl groups via N—H…O and O—H…N hydrogen bonds to form a large cage‐like tetrameric unit with an R42(20) graph‐set ring motif. These tetrameric units are further connected via base pairing through a pair of N—H…N hydrogen bonds, generating R22(8) motifs (supramolecular homosynthon). In the other series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐methylthiophene‐2‐carboxylic acid (1/1), 5 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–benzoic acid (1/1), 6 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐methylbenzoic acid (1/1), 7 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐methylbenzoic acid (1/1), 8 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐methylbenzoic acid (1/1), 9 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐aminobenzoic acid (1/1), 10 , the carboxyl group interacts with position N3 and the adjacent 4‐amino group of the corresponding pyrimidine ring via O—H…N and N—H…O hydrogen bonds to generate the robust R22(8) supramolecular heterosynthon. These heterosynthons are further connected by N—H…N hydrogen‐bond interactions in a linear fashion to form a chain‐like arrangement. In cocrystal 1 , a Br…Br halogen bond is present, in cocrystals 2 and 3 , Cl…Cl halogen bonds are present, and in cocrystals 5 , 6 and 7 , Cl…O halogen bonds are present. In all of the ten cocrystals, π–π stacking interactions are observed.  相似文献   

10.
Single crystals of (2S,5R)‐2‐isopropyl‐5‐methyl‐7‐(5‐methylisoxazol‐3‐yl)cyclohexanespiro‐3′‐(1,2,4,5,7‐tetraoxazocane), C16H26N2O5, have been studied via X‐ray diffraction. The tetraoxazocane ring adopts a boat–chair conformation in the crystalline state, which is due to intramolecular interactions. Conformational analysis of the tetraoxazocane fragment performed at the B3LYP/6‐31G(d,2p) level of theory showed that there are three minima on the potential energy surface, one of which corresponds to the conformation realized in the solid state, but not to a global minimum. Analysis of the geometry and the topological parameters of the electron density at the (3,?1) bond critical points (BCPs), and the charge transfer in the tetraoxazocane ring indicated that there are stereoelectronic effects in the O—C—O and N—C—O fragments. There is a two‐cross hyperconjugation in the N—C—O fragment between the lone electron pair of the N atom (lpN) and the antibonding orbital of a C—O bond (σ*C—O) and vice versa between lpO and σ*C—N. The oxazole substituent has a considerable effect on the geometry and the topological parameters of the electron density at the (3,?1) BCPs of the tetraoxazocane ring. The crystal structure is stabilized via intermolecular C—H…N and C—H…O hydrogen bonds, which is unambiguously confirmed with PIXEL calculations, a quantum theory of atoms in molecules (QTAIM) topological analysis of the electron density at the (3,?1) BCPs and a Hirshfeld analysis of the electrostatic potential. The molecules form zigzag chains in the crystal due to intermolecular C—H…N interactions being electrostatic in origin. The molecules are further stacked due to C—H…O hydrogen bonds. The dispersion component in the total stabilization energy of the crystal lattice is 68.09%.  相似文献   

11.
Fluorescence spectra of N-substituted 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones consist of two bands, the long-wavelength band with anomalous Stokes shift, which corresponds to the emission of the product of intramolecular photoinduced proton transfer, and the short-wavelength band belonging to the form in which proton transfer does not occur. It is assumed that there is equilibrium between two planar rotamers in the ground state: one with the N-H…N hydrogen bond in which the intramolecular photoinduced proton transfer occurs and the other with the N-H…O bond, which does not experience hydrogen transfer. According to ab initio quantum-chemical calculations, the potential energy of proton transfer in the first excited singlet state has a potential barrier of 2.1–26.8 kJ/mol depending on the electron-withdrawing ability of the substituent on the amino group.  相似文献   

12.
The synthesis, IR spectroscopic study, and X-ray diffraction analysis (CIF file CCDC no. 1574078) are carried out for 1,3-diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid (I). The structural units of a crystal of compound I are (H4.5HPdta)0.5– anions, (H5.5HPdta)0.5+ cations, and molecules of water of crystallization joined by a branched network of hydrogen bonds: strong intermolecular O–H…O and intramolecular N–H…O bonds.  相似文献   

13.

In the crystal structure of 2-methylanilinium hydrogen DL-malate hydrate (I), an additional water molecule is present in asymmetric unit. In the crystal structures of 4-methoxyanilinium hydrogen DL-malate (II) and 4-methylanilinium hydrogen DL-malate (III), the hydrogen malate anions exhibit configurational disorder with major component occupy S-configuration and minor component occupy R-configuration provided both (II) and (III) are prepared from a racemic mixture of DL-malic acid. In crystal structures of compounds (I)–(III), the hydrogen malate anions and anilinium cations from O-H…O and N-H…O hydrogen bonds which exhibit interesting supramolecular frameworks. In compound (I), the N-H…O and O-H…O hydrogen-bonded anionic-cationic framework form two-dimensional hydrophilic and hydrophobic layers in which the lattice water molecules are embedded in hydrophilic layers. However, in crystal structures of (II) and (III), the hydrogen DL-malate anions form two-dimensional anionic substructure through O-H…O hydrogen bond, in which the anilinium cations are anchored through N-H…O hydrogen bonds.

  相似文献   

14.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

15.
16.
The two title mol­ecules, both C15H14N2O3, are roughly planar and display a trans conformation with respect to the –N=N– double bond, as found for other diazene derivatives. In both compounds, there are intramolecular O—H⋯O hydrogen bonds and the crystal packing is governed by weak intermolecular C—H⋯O hydrogen bonds and π–π stacking.  相似文献   

17.
Polymorphism is a challenging phenomenon and the competitive packing alternatives which are characteristic for polymorphs may be encountered for essentially rigid molecules. A second crystal form of the well known compound o‐nitrobenzoic acid, C7H5NO4, an important intermediate in the production of dyes, pharmaceuticals and agrochemicals, is described. Although obtained serendipitously, its intra‐ and intermolecular features match expectations from database searches and theoretical calculations. O—H…O hydrogen‐bonded carboxylic acid dimers represent the building blocks in both polymorphs. For steric reasons and in agreement with a calculated potential energy surface, the carboxylic acid and nitro groups cannot simultaneously be coplanar with the benzene ring but have to tilt. In the well established crystal form, this out‐of‐plane torsion is more pronounced for the nitro substituent. In contrast, the new polymorph is characterized by a major tilt of the carboxylic acid group. The molecules in both alternative crystal forms achieve a similar compromise with respect to acceptable intramolecular O…O contacts.  相似文献   

18.
Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4′‐bipyridine‐N,N′‐dioxide (BPNO), and solid‐state stability were studied. Apart from a known X‐ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3‐hydroxypyridine‐N‐oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N? H???Nimidazole and N? H???Ntetrazine interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZ?BPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen‐bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N–H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C?O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen‐bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen‐bond reorganization.  相似文献   

19.
The crystal structures of the antimicrobial drug tinidazole [ TNZ ; systematic name: 1‐(2‐ethylsulfonylethyl)‐2‐methyl‐5‐nitroimidazole, C8H13N3O4S] and the 1:1 cocrystal of TNZ with the naturally occurring compound vanillic acid ( VA ; systematic name: 4‐hydroxy‐3‐methoxybenzoic acid, C8H8O4), namely, the TNZ – VA cocrystal, were determined by single‐crystal X‐ray analysis at 100 K. The supramolecular structure of the TNZ – VA cocrystal is composed of a carboxylic acid dimer and an O—H…N(heterocycle) synthon in the form of layers made up of O—H…N and O—H…O hydrogen bonds. The layers are joined via C—H…O hydrogen bonds, π–π stacking and C—H…π interactions. The energy framework analysis, together with interaction energy calculations using the DLPNO‐CCSD(T) method, indicates that the TNZ – VA cocrystal inherits strong interactions from the TNZ and VA crystals, which accounts for the enhanced thermal stability and reduced dissolution rate. To the best of our knowledge, this is the first example of a cocrystal containing TNZ .  相似文献   

20.
The crystal structures of uncharged tetrahedral dithiocyanato zinc complexes with N-methylated ethylenediamines have been determined with a view to a study of intermolecular hydrogen-bonding interactions in these compounds. It is found that the H(N) hydrogen atoms are exhaustively engaged in N–H(N) … S bonds. The majority of these bonds are branched (bifurcated or trifurcated), and the hydrogen-bond systems they form all contain one of the two characteristic primitive core motifs: either a discrete centrosymmetric […S…H…]2 dimer or an infinite […S…H…] helix about a 21 or pseudo-21 axis. The hydrogen bonding is analyzed in detail, with particular attention to the existence of correlations between the N–H(N)–S angles and the H(N) … S distances as well as between the corresponding N–H(N)–S/H(N)…S pairs in the bifurcated N–H(N)…2 S bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号