首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With a scanning tunneling microscope (STM), we study the initial stage of nucleation and growth of Si on Pb monolayer covered Si(111) surfaces. The Pb monolayer can work as a good surfactant for growth of smooth Si thin films on the Si(111) substrate. We have found that nucleation of two-dimensional (2D) Pb-covered Si islands occurs only when the substrate temperature is high enough and the Si deposition coverage is above a certain coverage. At low deposition coverages or low substrate temperatures, deposited Si atoms tend to self-assemble into a certain type of Si atomic wires, which are immobile and stable against annealing to ~ 200 °C. The Si atomic wires always appear as a double bright-line structure with a separation of ~ 9 Å between the two lines. After annealing to ~ 200 °C for a period of time, some sections of Si atomic wires may decompose, meanwhile the existing 2D Pb-covered Si islands grow laterally in size. The self-assembly of Si atomic wires indicate that single Si adatoms are mobile at the Pb-covered Si(111) surface even at room temperature. Further study of this system may reveal the detailed atomic mechanism in surfactant-mediated epitaxy.  相似文献   

2.
J. Yuhara  K. Ito  T. Matsui 《Surface science》2012,606(1-2):115-119
The surface composition and morphology of Fe(111) have been examined through a combined analysis that includes low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). The preferential segregation of sulfur has been clearly identified by AES upon annealing. The STM images exhibit numerous triangular pits of various sizes, and the LEED patterns show diffused n × 1 spots. The triangular pits reveal a Sierpinski gasket fractal. For sulfur-free Fe(111), nitrogen segregates to the surface upon annealing, forming a 4√3 × 4√3 superstructure that is identified by LEED patterns and STM images. The STM images show nanoscale triangular clusters regularly aligned in a hexagonal 4√3 × 4√3 configuration. Ultra-thin chromium film deposited on a nitrogen-segregated Fe(111) surface with post-annealing induces further nitrogen segregation, resulting in the formation of triangular pyramid-shaped CrN nanoclusters.  相似文献   

3.
The initial stage of CdTe growth on silicon has been investigated using angle-resolved photoemission and scanning tunneling microscopy (STM). In order to study initial stage of CdTe on Si, we have desorbed CdTe by annealing at 600 °C so that only one monolayer of Te remains on the Si(1 0 0) substrate. Te/Si(1 0 0)2×1 superstructure has been observed by LEED. Photoemission spectra indicate that Te atoms bond with the Si dangling bond. Atomically resolved STM images reveal that the Te atoms form dimers. It is observed that buckling direction of Te-dimer changes and the dimmers are broken in the site of some dimmer rows. It can be explained that the large lattice mismatch cause the switching of the buckling direction and the breaking of Te-dimer resulted surface relaxation.  相似文献   

4.
Surface mass transport of In film on vicinal Si(0 0 1) has been systematically investigated by a scanning Auger electron microscopy (SAM), low energy electron diffraction (LEED) and atomic force microscopy (AFM). It was observed that the temperature dependence of the mass transport shows the critical phenomenon. Above a critical temperature Tc, surface electromigration of the In film toward the cathode side dominated the surface mass transport on the vicinal Si(0 0 1) surface. The LEED and AFM observations revealed that the In film surface on the vicinal Si(0 0 1) consists of 3×4 terraces and (3 1 0) facets. The area ratio of the facet to the terrace exhibited abrupt an increase at Tc. It is believed that the change of the mass transport is related to the abrupt change of the area ratio of the facet to the terrace. Both the critical temperature Tc and the spread due to the surface electromigration of the In film depended on the configuration of the DC current direction and the step edge.  相似文献   

5.
D. Kato  T. Matsui  J. Yuhara 《Surface science》2010,604(15-16):1283-1286
The oxidation of submonolayer zinc films on Rh(100) surface by O2 gas has been studied using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). With a zinc coverage of 0.8 ML, an atomically flat ultra-thin zinc oxide film formed at an oxygen partial pressure of 2 × 10? 8 mbar and a temperature of 150 °C. The zinc oxide film showed a c(16 × 2) LEED pattern. The high resolution STM image of the zinc oxide film showed single dotted spots and double dotted spots arranged linearly and periodically along the [01¯1] direction. We propose an atomic arrangement model of the film accounting for the LEED pattern, the STM image, and the atomic arrangement of the bulk ZnO(0001) surface.  相似文献   

6.
C. Fan  G.P. Lopinski 《Surface science》2010,604(11-12):996-1001
The gas phase anhydrous reaction of glycidoxypropyldimethylethoxysilane (GPDMES) with a model hydroxylated surface has been investigated using high-resolution electron energy loss spectroscopy (HREELS) and scanning tunneling microscopy (STM). Water dissociation on the clean reconstructed (2 × 1)-Si(100) surface was used to create an atomically flat surface with ~ 0.5 ML of hydroxyl groups. Exposure of this surface to GPDMES at room temperature under vacuum was found to lead to formation of covalent Si–O–Si bonds although high exposures (6 × 108 L) were required for saturation. STM images at the early stages of reaction indicate that the reaction occurs randomly on the surface with no apparent clustering. The STM images together with semi-empirical (AM1) calculations provide evidence for hydrogen bonding interactions between the oxygen atoms in the molecule and surface hydroxyl groups at low coverage.  相似文献   

7.
Since more than twenty years it is known that deposition of Ag onto Si(111)–(7 × 7) leads under certain conditions to the formation of so-called “ring-like” clusters, that are particularly stable among small clusters. In order to resolve their still unknown atomic structure, we performed voltage dependent scanning tunneling microscopy (STM) measurements providing interesting information about the electronic properties of clusters which are linked with their atomic structure. Based on a structural model of Au cluster on Si(111)–(7 × 7) and our STM images, we propose an atomic arrangement for the two most stable Ag “ring-like” clusters.  相似文献   

8.
The oxidation of W(110) was studied over a temperature a range of 1000 K to 1600 K at 1 × 10? 6 Torr oxygen. The subsequent oxide structure was then characterized using Low Energy Electron Diffraction (LEED) and Scanning Tunneling Microscopy (STM). It was found that the resulting structure was remarkably similar to that of Mo(110) oxidized under similar conditions. Using the Mo(110) oxide structure as our basis, along with atomic resolution STM images, we have constructed a model for the surface oxide of W(110).  相似文献   

9.
The surface structure of Ni2P (101?0), a model for highly active hydrodesulfurization catalysts, was studied using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) in order to understand the reconstruction of the surface layers. Annealing at 573 K revealed a (1 × 1) LEED pattern which changed to a c(2 × 4) arrangement by further heating to 723 K. Atomic scale STM images were obtained for both the (1 × 1) and c(2 × 4) structures. Bright spots observed in the STM images were interpreted to be due to surface phosphorus atoms and this was supported by a density functional theory (DFT) simulation. Several possible models for the c(2 × 4) reconstructed structures were proposed including a P-dimer defect model, a missing-row model and a missing-row + added-row model. The last model gave the best explanation for the c(2 × 4)structure. The mechanism for the c(2 × 4) reconstruction on the Ni2P (101?0) surface is discussed.  相似文献   

10.
We have investigated the structure and morphology of the InAs(1 1 1)B surface using Low Energy Electron Diffraction (LEED), Scanning Tunneling Microscopy (STM) and Scanning Electron Microscopy (SEM). The surface was prepared by annealing in the presence of an arsenic or atomic hydrogen pressure. A (2 × 2) reconstruction that changes into a (1 × 1) unreconstructed surface after prolonged annealing was observed irrespective of preparation method, while the surface morphology was distinctly different in the two cases. Detailed atomic scale models are proposed to explain the behavior. Deposition of Au aerosol nanoparticles on the sample prior to annealing was found to have no effect on the surface reconstruction. The Au particles were found to sink into the surface.  相似文献   

11.
Wei Jie Ong  Eng Soon Tok 《Surface science》2012,606(13-14):1037-1044
Using Scanning Tunneling Microscope (STM), we show that the surface undergoes phase transformation from disordered “1 × 1” to (7 × 7) reconstruction which is mediated by the formation of Si magic clusters. Mono-disperse Si magic clusters of size ~ 13.5 ± 0.5 Å can be formed by heating the Si(111) surface to 1200 °C and quenching it to room temperature at cooling rates of at least 100 °C/min. The structure consists of 3 tetra-clusters of size ~ 4.5 ? similar to the Si magic clusters that were formed from Si adatoms deposited by Si solid source on Si(111)-(7 × 7) [1]. Using real time STM scanning to probe the surface at ~ 400 °C, we show that Si magic clusters pop up from the (1 × 1) surface and form spontaneously during the phase transformation. This is attributed to the difference in atomic density between “disordered 1 × 1” and (7 × 7) surface structures which lead to the release of excess Si atoms onto the surface as magic clusters.  相似文献   

12.
C.A. Nolph  H. Liu  P. Reinke 《Surface science》2011,605(13-14):L29-L32
The bonding geometry of monoatomic Mn-wires, which form on the reconstructed Si(100)(2 × 1) surface at room temperature, was investigated with scanning tunneling microscopy (STM). The Mn-wire structures are always perpendicular to the Si-dimer rows and the images exhibit a strong modulation of their apparent height as a function of bias voltage. The Mn-wire structures appear as depressions in the empty state images for bias voltages around 0.7 V, and as protrusions for all other bias voltages. It is suggested that the wire-images are defined by mixed Mn-Si states, either through a hybridization between the Mn d-states and the Si-p states, or backbonding from Mn-d electrons into the broken Si-dimer bond. The dominant bonding geometry shows that the Mn-wire maxima are positioned in between the Si-dimer rows, and a small percentage of about 20% is in registry with the Si-dimer rows, and might be described as defective wires. The experimental STM images cannot currently be described in a satisfactory manner with theoretical bonding models from the literature.  相似文献   

13.
The interaction of atomic H with Ag(1 1 1)/Si(1 1 1)7 × 7 surfaces was studied by thermal desorption (TD) spectroscopy and scanning tunneling microscopy (STM) at room temperature. TD spectroscopy revealed an intense peak from mono H–Si bonds, even though the Si surface was covered by the Ag atoms. This peak was not observed from Ag-coated SiO2/Si substrates. STM observation showed no clear change of the Ag surface morphology resulting from H exposure. All these results indicate that the atomic H adsorbs at neither the Ag surfaces nor Ag bulk sites, but at the Ag/Si interface by diffusing through the Ag film.  相似文献   

14.
Tin (Sn) induced (1 × 2) reconstructions on GaAs(100) and InAs(100) substrates have been studied by low energy electron diffraction (LEED), photoelectron spectroscopy, scanning tunneling microscopy/spectroscopy (STM/STS) and ab initio calculations. The comparison of measured and calculated STM images and surface core-level shifts shows that these surfaces can be well described with the energetically stable building blocks that consist of Sn–III dimers. Furthermore, a new Sn-induced (1 × 4) reconstruction was found. In this reconstruction the occupied dangling bonds are closer to each other than in the more symmetric (1 × 2) reconstruction, and it is shown that the (1 × 4) reconstruction is stabilized as the adatom size increases.  相似文献   

15.
Structures of monolayer nickel nitride (NiN) on Cu(0 0 1) surface are studied by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Formations of Ni–N chemical bonds and NiN monolayer at the surface are confirmed by XPS on the N-adsorbed Cu(0 0 1) surfaces after Ni deposition and subsequent annealing to 670 K. A c(2 × 2) structure is always observed in the LEED patterns, which is a quite contrast to the (2 × 2)p4g structure observed usually at the N-adsorbed Ni(0 0 1) surface. Atomic images by STM indicate the mixture of Ni–N and Cu–N structures at the surface. Density of the trenches on the N-saturated surface decreases and the grid pattern on partially N-covered surfaces becomes disordered with increasing the Ni coverage. These results are attributed to the decrease of the surface compressive stress at the N-adsorbed Cu surface by mixing Ni atoms.  相似文献   

16.
Combined investigation of STM, high-resolution synchrotron photoemission, and density functional theory calculations allowed us to understand the Sb-induced structural-transformation of Si(114)-2 × 1. When 2 ML of Sb is deposited on Si(114)-2 × 1 at room temperature and postannealed at 500 °C, all of the surface Si atoms with dangling bonds are replaced by Sb atoms. Among one-dimensional (1D) structures consisting of Si(114)-2 × 1, such as a dimer with a 6-membered ring (D6) row, a rebonded-atom (R) row, and a tetramer (T) row [D6-R-T], the T row is split into a dimer row with a 7-membered ring (D7) and an R row [D6-R-D7-R]. Since the R-D7-R unit, a building block of Sb/Si(113)2 × 2, is under stress-balance, the Sb/Si(114)-2 × 1 surface is stressed compressively due to the extra D6 unit. As a result, with additional postannealing at 600 °C, two periods of this 2 × 1 [(D6-R-D7-R)-(D6-R-D7-R)] are gradually converted to 2 × 2 [(D6-R-D6-R)-(R-D7-R)], where the D6-R (115) unit is stress-balanced. The corresponding photoemission data obtained from both of the phases show that all of the surface components of the clean surface have disappeared, instead the single Sb–Si interfacial component has appeared, which indicates that the charge transfers from interfacial Si to surface Sb atoms. Finally, the density functional theory calculations have also confirmed that there are two distinct phases determined by the chemical potential of passivating Sb atoms.  相似文献   

17.
Using the pseudopotential method and the local density approximation of density functional theory we have investigated the stability, atomic geometry, and electronic states for low-coverage Ca adsorbates on the Si(001) surface within the (2 × n) reconstructions with n = 2, 3, 4, 5. Our total energy calculations suggest that the (2 × 4) phase represents the most energetically stable structure with the Ca coverage of 0.375 ML. Within this structural model, each Ca atom is found to form a bridge with the inner two Si–Si dimers. The inner Si–Si dimers become elongated and symmetric (untilted). The band structure calculation indicates that the system is semiconducting with a small band gap. Significant amount of charge transfer from the Ca atoms to neighbouring Si atoms has been concluded by analysing the electronic charge density and simulation of scanning tunnelling microscopy images. The highest occupied and lowest unoccupied electronic states are found to arise from the inner and outer Si–Si dimer components, respectively.  相似文献   

18.
The atomic arrangement of submonolayer Bi films on Rh(111) surface was examined using low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). With low coverage, the LEED patterns showed incommensurate (IC) spots. The unit cell of IC was close to c(2 × 4) and had twofold symmetry. As the coverage increased, the unit cell shrank continuously along the [1¯10] direction, and the commensurate c(2 × 4) was formed at a coverage of 0.5 ML. At the coverage above 0.5 ML, two different structures of c(2 × 4) and (4 × 4) were observed by STM. When the surface is fully saturated by monolayer Bi atoms, Bi atoms formed the uniform (4 × 4) structure with sixfold symmetry. This is due to a strong Bi–Rh attractive interaction resulting in the two-dimensional localization of Bi adsorbates on the surface. As a result, a symmetrical transition of Bi films from twofold to sixfold symmetry occurred on Rh(111).  相似文献   

19.
The atomic structures of Au and Ag co-adsorption-induced √21 × √21 superstructure on a Si(111) surface, i.e., (Si(111)-√21 × √21-(Au, Ag)), where the Si(111)-5 × 2-Au surface is used as a substrate, have been investigated using reflection high-energy positron diffraction (RHEPD) and photoemission spectroscopy. From core-level spectra, we determined the chemical environments of Ag and Au atoms present in the Si(111)-√21 × √21-(Au, Ag) surface. From the rocking curve and pattern analyses of RHEPD, we found that the atomic coordinates of the Au and Ag atoms were approximately the same as those of the Au and Ag atoms in other Si(111)-√21 × √21 surfaces with different stoichiometries. On the basis of the core-level and RHEPD results, we revealed the atomic structure of the Si(111)-√21 × √21-(Au, Ag) surface.  相似文献   

20.
Metal-free phthalocyanine (Pc) molecules adsorbed on the Au(110) surface have been studied both experimentally (STM, LEED) and with density functional calculations. A strong interaction between substrate and adsorbate is observed. On the one hand, a clear template effect of the anisotropic substrate is observed: already at low coverages, the Pc molecules adsorb in various typical row patterns. On the other hand, the molecular adsorption modifies the substrate: at coverages higher than 0.25 monolayers, the usual (1 × 2) reconstruction is converted to a (1 × 3) reconstruction. First principle DFT calculations yield adsorption geometries that agree with the measured STM images and adsorption energies in the range of 2–3 eV. The adsorption leads to covalent and van der Waals interactions between adsorbate and substrate and is accompanied by a considerable charge transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号