首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
InN films grown on sapphire at different substrate temperatures from 550°C to 700°C by metalorganic chemical vapor deposition were investigated. The low-temperature GaN nucleation layer with high-temperature annealing (1100°C) was used as a buffer for main InN layer growth. X-ray diffraction and Raman scattering measurements reveal that the quality of InN films can be improved by increasing the growth temperature to 600°C. Further high substrate temperatures may promote the thermal decomposition of InN films and result in poor crystallinity and surface morphology. The photoluminescence and Hall measurements were employed to characterize the optical and electrical properties of InN films, which also indicates strong growth temperature dependence. The InN films grown at temperature of 600°C show not only a high mobility with low carrier concentration, but also a strong infrared emission band located around 0.7 eV. For a 600 nm thick InN film grown at 600°C, the Hall mobility achieves up to 938 cm2/Vs with electron concentration of 3.9 × 1018 cm−3. Supported by the National Basic Research Program of China (Grant No. 2006CB6049), the National Natural Science Foundation of China (Grant Nos. 6039072, 60476030 and 60421003), the Great Fund of the Ministry of Education of China (Grant No. 10416), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20050284004), and the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK2005210 and BK2006126)  相似文献   

2.
王健  谢自力  张荣  张韵  刘斌  陈鹏  韩平 《物理学报》2013,62(11):117802-117802
研究了利用金属有机化学气相淀积生长的氮化铟薄膜的光致发光特性. 由于氮化铟本身具有很高的背景载流子浓度, 费米能级在导带之上, 通过能带关系图以及相关公式拟合光致发光图谱可以得到生长的氮化铟的带隙为0.67 eV, 并且可以计算出相应的载流子浓度为n=5.4×1018 cm-3, 从而找到了一种联系光致发光谱与载流子浓度两者的方法. 另外通过测量变温条件下氮化铟的发光特性, 研究了发光峰位以及发光强度随温度的变化关系, 发现光致发光强度随温度的升高逐渐降低, 发光峰位随温度的升高只是红移, 并没有出现"S"形的非单调变化, 这种差异可能是由于光致发光谱的半高宽过高导致, 同时也可能与载流子浓度以及内建电场强度有关. 关键词: 氮化铟 金属有机化学气相淀积 光致发光 载流子浓度  相似文献   

3.
Using a combination of valence force-field molecular mechanics, 20-band sp3d5s atomistic tight-binding approach, and appropriate post-processing tools, we have studied the origin and nature of optical polarization anisotropy in semiconducting GaN/InN/GaN disk-in-wire structures having wurtzite crystal symmetry and varying InN disk thicknesses. True atomistic symmetry due to the presence of strong internal fields, coupled with quantum mechanical size quantization effects, results in unconventional characteristics in the electronic structure related to non-degeneracy in the excited P states and rotation (symmetry lowering) in the wavefunctions. The optical polarization ratio projected on the XY (growth) plane and, in particular, the transition rates have been shown to be strongly dependent on the crystal internal fields and the thickness of the InN disk.  相似文献   

4.
半导体氮化铟(InN)的电学性质   总被引:3,自引:0,他引:3  
本文总结了近年来半导体InN薄膜材料(主要是六方纤锌矿结构的InN及异质结构)的电学性质研究进展,重点内容为InN的载流子浓度和迁移率,造成InN中高电子浓度现象的施主分析、载流子输运特性及表面、界面特性等。同时也涉及了部分立方闪锌矿结构InN的电学特性和InN在器件(主要是高电子迁移率晶体管器件)上的潜在应用。  相似文献   

5.
6.
Studies of lattice dynamics devoted to wurtzite InN are presented. Raman scattering experiments on both InN thin films and nanometric islands grown by Metal–Organic Vapor Phase Epitaxy (MOVPE) were performed at room temperature. From the Raman spectra recorded from InN films under hydrostatic pressure up to 13 GPa, linear pressure coefficients and the corresponding Grüneisen parameters for both E2 and A1(LO) phonons were extracted for the wurtzite structure up to 11 GPa, close to the starting pressure of the hexagonal to rock-salt phase transition of InN. Spectra at higher pressure suggest that InN undergoes a gradual phase transition, and the reverse transition exhibits a strong hysteresis effect during the downstroke. Then, we discuss recent results on large single InN islands grown on GaN buffer layers, obtained by spatially resolved micro-Raman measurements. The magnitude of the residual strain is estimated, using a recent determination of phonon deformation potentials. It is found to vary linearly as a function of island height.  相似文献   

7.
The electrical transport properties of InN/GaN heterostructure based Schottky junctions were studied over a wide temperature range of 200-500 K. The barrier height and the ideality factor were calculated from current-voltage (I-V) characteristics based on thermionic emission (TE), and found to be temperature dependent. The barrier height was found to increase and the ideality factor to decrease with increasing temperature. The observed temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. Such inhomogeneous behavior was modeled by assuming the existence of a Gaussian distribution of barrier heights at the heterostructure interface.  相似文献   

8.
9.
Indium nitride (InN) films were grown on (1 1 1)GaAs substrates by reactive magnetron sputtering using an indium target. It was found that the crystal quality of InN films depends strongly on the substrate temperature and sputtering gas pressure, and highly c-axis preferred wurtzite InN films can be obtained at growth temperature as low as 100°C. Based on these results, the growth mechanism of InN films in the reactive magnetron sputtering was discussed.  相似文献   

10.
We report the effect of rf power on the structural, optical and electrical properties of InN films grown by modified activated reactive evaporation. In this technique, the substrates were kept on the cathode instead of ground electrode. The films grown at higher rf power shows preferential c-axis orientations for both silicon and glass substrates. The films prepared at 100 W show best structural, electrical and optical properties. The c-axis lattice constant was found to decrease with increase in rf power which can be attributed to reduction in excess nitrogen in the films. The band gap decreases with increase in rf power due to Moss-Burstein shift. The decrease in carrier concentration and optical band gap with increase in rf power can also be related to excess nitrogen in the film. The Raman spectra shows a red shift in the A1(LO) and E2 (high) mode from the reported value. The possible origin of the present large band gap is due to Moss-Burstein shift. The new film growth method opens opportunities for integrating novel substrate materials with group III nitride technologies.  相似文献   

11.
The vibrational properties of InN films with different strain have been studied using Infrared ellipsometry and Raman scattering spectroscopy. We have established a correlation between the phonon mode parameters and the strain, which allows the determination of the deformation potentials and the strain-free frequencies of the InN E1(TO) and E2 modes. The LO phonons and their coupling to the free-carrier plasmon excitations are also discussed in relation to the carrier concentration in the films.  相似文献   

12.
The amount of InN included in InGaN films grown by MOCVD (metalorganic chemical vapor deposition) was estimated by X-ray diffraction measurement technology. The In compositions in our InGaN films are measured as 0.1–0.34 by X-ray 2θ scan using Vegard’s law. The inclusion of InN in InGaN layers was obtained as 0.0684–2.6396% by measuring the ratio of the integrated intensity of the InN (0002) peak to that of the InGaN (0002) peak in X-ray rocking curves. The theoretical diffraction intensities from InN and InGaN have been calculated according to the X-ray-diffraction theory. The values of the InN inclusion for all our samples were less than 3%, which indicated that the degree of phase separation of the samples was low. It was also found that the flow rate of N2 carrier gas and the operation pressure strongly affected the InN inclusion in InGaN. Received: 20 November 2000 / Accepted: 16 May 2001 / Published online: 27 June 2001  相似文献   

13.
This study presents the MOVPE growth of InN films onto different substrate materials, including sapphire, nitrided or not, GaN and AlN buffer layers deposited onto sapphire, and Si(111).For InN growth onto nitrided sapphire, different growth parameters were investigated in order to determine the best growth conditions. We found that a low V/III molar ratio has to be used in order to increase the growth rate. A light nitridation treatment gives the best electrical properties: mirror like layers with a mobility of 800 cm2/V  s were obtained. At room temperature, reflectivity experiments show the existence of a transition at 1.2 eV, while photoluminescence appears around 0.8 eV.Using the same growth conditions onto GaN buffers (with thicknesses ranging from 15 to 1000 Å), we found that the best mobilities are obtained above a given buffer thickness.By comparing also with AlN buffer layers and silicon substrates, we found that our previous conclusion still holds; lightly nitrided sapphire substrate leads to the best electrical properties and morphology.  相似文献   

14.
This paper reviews the field of nitride semiconductors ranging from GaN to InN with respect to metalorganic vapor phase epitaxy growth and characteristics starting from the period of single-crystalline films. Progress has been made on many fronts. For InGaN, a key material for the emitting layer of blue light-emitting-diodes, using nitrogen as the carrier and bubbling gases for metalorganic sources has been found to enhance indium incorporation, and composition control of InGaN has been achieved. The phase separation of the InGaAlN system has been semiempirically predicted using the strictly regular solution model. Regarding InN, which is a mysterious material, its band-gap energy has been found to be half the reported value. The polarity of the substrate has been found to affect the characteristics of epitaxially grown GaN. Finally, from a future perspective, InGaAlN laser diodes promise a laser diode with uncooled and high power operation, which is strongly required for optical communications systems.  相似文献   

15.
To investigate both the optical and electrical properties of InN, we have measured the infrared reflectance spectra of InN thin films and performed the fitting analyses of the infrared spectra to obtain not only phonon frequencies and the damping factors but also the carrier concentration of InN. In this paper, we extend the aim of those analyses to the electron mobility and demonstrate that the temperature dependence of the electron mobility can be discussed using the infrared reflectance spectra analyses.  相似文献   

16.
Indium nitride (InN) films with different free electron concentration and optical bandgap were grown either directly on sapphire substrate or on pre-covered gallium nitride (GaN) buffer through metal-organic chemical vapor deposition (MOCVD) method. Based on first-principle calculations, we confirm that the widening of InN optical bandgap reported before is caused by high density of free electrons. To find the contributor of the free electrons, the characteristic energetic levels of ON, VN and SiIn are investigated. We find that they are all high enough to uplift the optical bandgap from about 0.78 eV to 1.9 eV, which almost can't be enlarged further when it reaches 2.09 eV.  相似文献   

17.
Transmission measurements have been carried out on InN thin films grown by radio frequency magnetron sputtering on a sapphire (0001) substrate at 10–300 K. With the aid of a novel procedure developed for analyzing the transmission spectra, the effect of temperature on optical properties, such as the absorption coefficient, band-gap, Urbach bandtail characteristics, refractive index and extinction coefficient, of InN thin films has been determined. The wavelength and temperature dependence of the absorption coefficient in both the Urbach and intrinsic absorption regions has been described by a series of empirical formulae. The temperature dependence of the refractive index dispersion below the band-gap is also found to follow a Sellmeier equation. These formulae are very useful for the characterization and device design of InN films. The free-electron concentration in the InN thin film determined here is also found to be in good agreement with that obtained from infrared reflection measurements. PACS 78.66.Fd; 78.40.Fy; 78.20.Bh; 78.20.Ci  相似文献   

18.
利用X射线衍射(XRD)技术测量了MOCVD生长的InGaN薄膜中的InN分凝量.利用Vegard定理和XRD 2θ扫描测得实验的InGaN薄膜的In组分为0.1~0.34.通过测量XRD摇摆曲线的InN(0002)和InGaN(0002)的积分强度之比测得InN在InGaN中的含量为0.0684%~2.6396%.根据XRD理论,计算出InN和InGaN的理论衍射强度.InN含量在所有样品中均小于3%,这表明样品的相分离度比较低.还发现InN在InGaN薄膜中的含量与氮气载气流量和反应室气压明显相关.  相似文献   

19.
The photoreflectance (PR) spectroscopy has been applied to investigate the band-gap energy (Eg) of indium nitride (InN) thin films grown by rf magnetron sputtering. A novel reactive gas-timing technique applied for the sputtering process has been successfully employed to grow InN thin films without neither substrate heating nor post annealing. The X-ray diffraction (XRD) patterns exhibit strong peaks in the orientation along (0 0 2) and (1 0 1) planes, corresponding to the polycrystalline hexagonal-InN structure. The band-gap transition energy of InN was determined by fitting the PR spectra to a theoretical line shape. The PR results show the band-gap energy at 1.18 eV for hexagonal-InN thin films deposited at the rf powers of 100 and 200 W. The high rf sputtering powers in combination with the gas-timing technique should lead to a high concentration of highly excited nitrogen ions in the plasma, which enables the formation of InN without substrate heating. Auger electron spectroscopy (AES) measurements further reveal traces of oxygen in these InN films. This should explain the elevated band-gap energy, in reference to the band-gap value of 0.7 eV for pristine InN films.  相似文献   

20.
Among the group-III nitrides, InN displays markedly unusual electronic transport characteristics due to its smaller effective mass, high peak velocity and high background electron concentration. First, a non-local empirical pseudopotential band structure of InN is obtained in the light of recent experimental and first-principles results. This is utilized within an ensemble Monte Carlo framework to illuminate the interesting transport properties. It is observed that InN has a peak velocity which is about 75% higher than that of GaN while at higher fields its saturation velocity is lower than that of GaN. Because of the strongly degenerate regime brought about by the high background electron concentration, the electron–electron interaction is also investigated, but its effect on the steady-state and transient velocity–field characteristics is shown to be negligible. Finally, hot phonon generation due to excessive polar optical phonon production in the electron scattering and relaxation processes is accounted for. The main findings are the appreciable reduction in the saturation drift velocity and the slower recovery from the velocity overshoot regime. The time evolution of the hot phonon distribution is analysed in detail and it is observed to be extremely anisotropic, predominantly along the electric force direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号