首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper we present the growth of La0.5Sr0.5CoO3 (LSCO) films on MgO, quartz, and silicon substrates by pulsed laser deposition (PLD) using a Ti:sapphire laser (50 fs, 800 nm wavelength). The morphology and the structure of the films were studied by X-ray diffraction, atomic force microscopy, and scanning electron microscopy. The films were polycrystalline and exhibit a good adherence to the Si substrate. Different deposition parameters such as substrate temperature, oxygen pressure, and laser fluence were varied to achieve good surface quality and low resistivity crystalline films. We also defined the optimum conditions in which the deposited film surface is particulate free. The best films (droplets free) were grown at 625 °C, in an ambient oxygen pressure of 6 mbar, with an incident laser fluence of 0.19 J/cm2. This is a mandatory step in the complex work of fabricating La0.5Sr0.5CoO3/BaTiO3/La0.5Sr0.5CoO3 heterostructures for the development of thin film capacitors for non-volatile ferroelectric access memory devices. PACS 81.15 Fg; 42.62-b; 68.65.Ac  相似文献   

2.
La0.5Sr0.5CoO3薄膜的外延生长及其机理研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用脉冲激光制膜法,在多种衬底和温度条件下,系统研究了La0.5Sr0.5CoO3(LSCO)薄膜的结构和外延生长特性,在LaAlO3,SrTiO3和MgO衬底上实现了LSCO薄膜的外延生长.外延生长的薄膜具有低的电阻率和金属性导电特征.研究表明,外延生长的最佳温度范围为700—800℃,最佳衬底为LaAlO3.并着重探讨了衬底材料和淀积温度等多种因素对LSCO薄膜的生长与性 关键词:  相似文献   

3.
The thickness-dependent dielectric properties and tunability of pulsed laser deposited (Ba0.5Sr0.5)0.925K0.075TiO3 (BSKT) thin films with different thickness ranging from 80 to 300 nm has been investigated. Dielectric properties of the BSKT thin films are substantially improved as the BSKT film thickness increases, which can be explained by the model of a low-permittivity dead layer that is connected in series with the bulk region of the film. The estimated values of thickness and the average dielectric constant for the dead layer are 2.4 nm and 23.5, respectively, in a Pt/BSKT/Pt capacitor structure. The tunability and figure of merit increased with increasing film thickness, which are attributed to the change in lattice parameter and the dead layer effect.  相似文献   

4.
La0.5Sr0.5CoO3 (LSCO) films have been grown on Si (100) by a metalorganic chemical liquid deposition (MOCLD) technique using lanthanum acetate, strontium acetate and cobalt acetate as the starting materials. Subsequent PbZr0.5Ti0.5O3 (PZT) films were deposited onto LSCO films by a modified sol-gel method. Field-emission scanning electron microscopy and X-ray diffraction analysis show that PZT and LSCO films are polycrystalline and entirely perovskite phase. At an applied electric field of 250 kV/cm, the Pt/PZT/LSCO capacitor shows no polarization fatigue after 3×109 switching cycles and an internal electric field; the remnant polarization Pr and the coercive field Ec are about 22 μC/cm2 and 73 kV/cm, respectively. The dielectric constant of PZT films is 650 at a frequency of 1 kHz. Received: 20 February 2001 / Accepted: 6 June 2001 / Published online: 30 August 2001  相似文献   

5.
0.85Bi0.5Na0.5TiO3-0.15Bi0.5K0.5TiO3 (BNKT15) lead-free thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the chemical solution deposition method. BNKT15 are MPB composition in the Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 (BNT-BKT) system. The maximum piezoelectric coefficient (d33,f) value of BNKT15 thin film is approximately 75 pm/V, which is comparable to that of polycrystalline PZT thin films. These results suggest that BNKT15 thin film can be used as an alternative for PZT films in piezoelectric micro-electromechanical systems.  相似文献   

6.
FeSe0.5Te0.5 thin films with PbO-type structure are successfully grown on MgO(1 0 0) and LaSrAlO4(0 0 1) substrates from FeSe0.5Te0.5 or FeSe0.5Te0.75 polycrystalline targets by pulsed-laser deposition. The film deposited on the MgO substrate (film thickness ∼ 55 nm) shows superconductivity at 10.6 K (onset) and 9.2 K (zero resistivity). On the other hand, the film deposited on the LaSrAlO4 substrate (film thickness ∼ 250 nm) exhibits superconductivity at 5.4 K (onset) and 2.7 K (zero resistivity). This suggests the strong influence of substrate materials and/or the c-axis length to superconducting properties of FeSe0.5Te0.5 thin films.  相似文献   

7.
《Current Applied Physics》2020,20(12):1447-1452
Lead-free (Bi0.5Na0.5)(Ti1-xMnx)O3 (BNTMn-x; x = 0, 0.0025, 0.0050, 0.0100) thin films were fabricated using a chemical solution deposition method on Pt/TiO2/SiO2/Si substrate. The effect of Mn substitution on crystal structures, surface morphologies, and ferroelectric and transverse piezoelectric properties of BNTMn-x thin films was investigated. The 0.5 mol% Mn-doped (Bi0.5Na0.5)(Ti0.995Mn0.005)O3 thin film exhibited a well-saturated ferroelectric P-E hysteresis loop at room temperature. A remnant polarization (Pr) of 16 μC/cm2 was obtained for the BNTMn-0.0050 film at an applied electric field of 400 kV/cm. In addition, a 1.12-μm-thick BNTMn-0.0050 film was applied as a cantilever. The Pt/BNTMn-0.0050/Pt/TiO2/SiO2/Si unimorph cantilever exhibited a high transverse piezoelectric coefficient (e311) of 2.43 C/m2.  相似文献   

8.
The complete (001)-oriented thin films of La0.5Sr0.5CoO3-x (LSCO) are deposited on (001) SrTiO3 substrates by pulsed laser deposition under reduced oxygen pressure. It is revealed that the c axis of the film stretches with depleting oxygen. The magnetic, electrical, and magnetoresistive properties of the films are characterized by means of various techniques. Significant dependence of these properties on oxygen deficiency in the films is demonstrated, with enhanced magnetoresistance recorded for the samples deposited over a wide range of reduced oxygen pressure. Received: 9 July 1998 / Accepted: 15 January 1999 / Published online: 31 March 1999  相似文献   

9.
(La0.5Sr0.5)CoO3 (LSCO) thin films have been fabricated on silicon substrate by the pulsed laser deposition method. The effects of substrate temperature and post-annealing condition on the structural and electrical properties are investigated. The samples grown above 650°C are fully crystalline with perovskite structure. The film deposited at 700°C has columnar growth with electrical resistivity of about 1.99×10−3 Ω cm. The amorphous films grown at 500°C were post-annealed at different conditions. The sample post-annealed at 700°C and 10−4 Pa has similar microstructure with the sample in situ grown at 700°C and 25 Pa. However, the electrical resistivity of the post-annealed sample is one magnitude higher than that of the in situ grown sample because of the effect of oxygen vacancy. The temperature dependence of resistivity exhibits semiconductor-like character. It was found that post-annealing by rapid thermal process will result in film cracks due to the thermal stress. The results are referential for the applications of LSCO in microelectronic devices.  相似文献   

10.
The difficulties in synthesizing phase pure BaTiO3 doped-(Na0.5Bi0.5)TiO3 are known. In this work, we reporting the optimized pulsed laser deposition (PLD) conditions for obtaining pure phase 0.92(Na0.5Bi0.5)TiO3-0.08BaTiO3, (BNT-BT0.08), thin films. Dielectric, ferroelectric and piezoelectric properties of BNT-BT0.08, thin films deposited by PLD on Pt/TiO2/SiO2/Si substrates are investigated in this paper. Perovskite structure of BNT-BT0.08 thin films with random orientation of nanocrystallites has been obtained by deposition at 600 °C. The relative dielectric constant and loss tangent at 100 kHz, of BNT-BT0.08 thin film with 530 nm thickness, were 820 and 0.13, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 22 μC/cm2 and a coercive field of 120 kV/cm. The piezoresponse force microscopy (PFM) data showed that most of the grains seem to be constituted of single ferroelectric domain. The as-deposited BNT-BT0.08 thin film is ferroelectric at the nanoscale level and piezoelectric.  相似文献   

11.
A wet chemical deposition method for preparing transparent conductive thin films on the base of Al-doped ZnO (AZO) nanoparticles has been demonstrated. AZO nanoparticles with a size of 7 nm have been synthesised by a simple precipitation method in refluxed conditions in ethanol using zinc acetate and Al-isopropylate. The presence of Al in ZnO was revealed by the EDX elemental analysis (1.8 at.%) and UV–Vis spectroscopy (a blue shift due to Burstein–Moss effect). The obtained colloid solution with the AZO nanoparticles was used for preparing by spin-coating thin films on glass substrates. The film demonstrated excellent homogeneity and transparency (T > 90%) in the visible spectrum after heating at 400 °C. Its resistivity turned to be excessively high (ρ = 2.6 Ω cm) that we ascribe to a poor charge percolation due to a high film porosity revealed by SEM observations. To improve the percolation via reducing the porosity, a sol–gel solution was deposited “layer-by-layer” in alternation with layers derived from the AZO colloid followed by heating. As it was shown by optical spectroscopy measurements, the density of thus prepared film was increased more than twice leading to a significant decrease in resistivity to 1.3 × 10−2 Ω cm.  相似文献   

12.
Highly (002)‐oriented Al‐doped zinc oxide (AZO) thin films with the thickness of less than 200 nm have been deposited on an oxygen‐controlled homo‐seed layer at 200 °C by DC magnetron sputtering. With the homo‐seed layer being employed, the full‐width at half maximum (FWHM) of the (002) diffraction peak for the AZO ultra‐thin films decreased from 0.33° to 0.22°, and, the corresponding average grain size increased from 26.8 nm to 43.0 nm. The XRD rocking curves revealed that the AZO ultra‐thin film grown on the seed layer deposited in atmosphere of O2/Ar of 0.09 exhibited the most excellent structural order. The AZO ultra‐thin film with homo‐seed layer reached a resistivity of 4.2 × 10–4 Ω cm, carrier concentration of 5.2 × 1020 cm–3 and mobility of 28.8 cm2 V–1 s–1. The average transmittance of the AZO ultra‐thin film with homo‐seed layer reached 85.4% in the range of 380–780 nm including the substrate. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper, we report and analyze the large blue shift in the optical band-gap of sol-gel derived Ba0.5Sr0.5TiO3 (BST) thin films. BST films of different thickness (150 nm, 320 nm and 480 nm respectively) were deposited layer by layer onto fused quartz substrates by a spin coating technique. The drying temperature for individual layers (pre-sintering temperature) was varied as 400, 500 and 600 °C. A large blue shift in the band-gap was observed (with a value 4.70 eV compared to the bulk value of 3.60 eV) for films pre-sintered at 400 °C, which decreased with increase in the pre-sintering temperature. To date such blue shifts have been attributed to grain size reduction, stress and the amorphous nature of the films. Here, the blue shift has been correlated with the presence of charge carriers generated by oxygen vacancies and explained on the basis of the Burstein-Moss effect.  相似文献   

14.
Quasi-crystal aluminum-doped zinc oxide (AZO) films were prepared by in situ radio frequency (RF) magnetron sputtering (sputtering without annealing) on glass substrates. The influence of deposition parameters on the optoelectronic and structural properties of the in situ deposited quasi-crystal AZO films was investigated in order to compare resulting samples. X-ray diffraction (XRD) patterns show that the quasi-crystal AZO thin films have excellent crystallization improved with increase of the RF power and substrate temperature, with an extremely preferential c-axis orientation exhibit sharp and narrow XRD pattern similar to that of single-crystal. Field emission scanning electron microscopy (FESEM) images show that quasi-crystal AZO thin films have uniform grains and the grain size increase with the increase of RF power and substrate temperature. Craters of irregular size with the columnar structure are observed in the quasi-crystal AZO thin films at a lower substrate temperature while many spherical shaped grains appeared at a higher substrate temperature. The average optical transmittance of all the quasi-crystal AZO films was over 85% in the 400-800 nm wavelength range. The resistivity of 4.176 × 10−4 Ω cm with the grain size of 76.4891 nm was obtained in the quasi-crystal AZO thin film deposited at 300 °C, under sputtering power of 140 W.  相似文献   

15.
16.
The effect of the dopants of Cr and V on the optoelectronic properties of AZO thin film by pulsed DC magnetron sputtering has been investigated. We also use HCl and KOH solutions to conduct the chemical stability of AZO:Cr:V thin film. The experimental results show that the optimum AZO optoelectronic properties without Cr and V doping obtain the resistivity of 9.87 × 10−4 Ω cm, optical transmittance of 84% and surface roughness rms value of 2.6 nm. The chemical stability of AZO will increase after Cr and V doping. Under the added V = 0.19 wt.%, Cr = 0.56 wt.%, AZO:Cr:V thin film showed 52% increased chemical stability and 128% decrease in surface roughness after etching (the resistivity was 3.62 × 10−3 Ω cm and optical transmittance 81%). From the experimental results, the higher resistivity obtained after KOH etching compared with after HCl etching. The reason is that the Zn/Al ratio will reduce after etching and cause the AZO film carrier density to reduce as well. However, the optical transmittance obtained after KOH etching will be higher than that after HCl etching. This is because that a better surface roughness after KOH etching obtained than after HCl etching.  相似文献   

17.
A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes.  相似文献   

18.
A parametric study of the growth of La0.5Sr0.5CoO3 (LSCO) thin films on (100) MgO substrates by pulsed-laser deposition (PLD) is reported. Films are grown under a wide range of substrate temperature (450–800 °C), oxygen pressure (0.1–0.9 mbar), and incident laser fluence (0.8–2.6 J/cm2). The optimum ranges of temperature, oxygen pressure, and laser fluence to produce c-axis oriented films with smooth surface morphology and high metallic conductivity are identified. Films deposited at low temperature (500 °C) and post-annealed in situ at higher temperatures (600–800 °C) are also investigated with respect to their structure, surface morphology, and electrical conductivity. Received: 20 November 1998 / Accepted: 6 July 1999 / Published online: 21 October 1999  相似文献   

19.
Aluminum doped zinc oxide (AZO) films were substitutes of the SnO2:F films on soda lime glass substrate in the amorphous thin-film solar cells due to good properties and low cost. In order to improve properties of AZO films, the TiO2 buffer layer had been introduced. AZO films with and without TiO2 buffer layer were deposited on soda lime glass substrates by r.f. magnetron sputtering. Subsequently, one group samples were annealed in vacuum (0.1 Pa) at 500 °C for 120 s using the RTA system, and the influence of TiO2 thickness on the properties of AZO films had been discussed. The XRD measurement results showed that all the films had a preferentially oriented (0 0 2) peak, and the intensity of (0 0 2) peak had been enhanced for the AZO films with TiO2 buffer layer. The resistivity of TiO2 (3.0 nm)/AZO double-layer film is 4.76×10−4 Ω cm with the maximum figure merit of 1.92×10−2 Ω−1, and the resistivity has a remarkable 28.7% decrease comparing with that of the single AZO film. The carrier scattering mechanism of TiO2 (3.0 nm)/AZO double-layer film had been described by Hall measurement in different temperatures. The average transmittance of all the films exceeded 92% in the visible spectrum. Another group samples were heat treated in the quartz tube in air atmosphere, and the effect of TiO2 thickness on thermal stability of AZO films had been discussed.  相似文献   

20.
This study used ultraviolet laser to perform the microcrystalline silicon thin film solar cell isolation scribing process, and applied the Taguchi method and an L18 orthogonal array to plan the experiment. The isolation scribing materials included ZnO:Al, AZO transparent conductive film with a thickness of 200 nm, microcrystalline silicon thin film at 38% crystallinity and of thickness of 500 nm, and the aluminum back contact layer with a thickness of 300 nm. The main objective was to ensure the success of isolation scribing. After laser scribing isolation, using the minimum scribing line width, the flattest trough bottom, and the minimum processing edge surface bumps as the quality characteristics, this study performed main effect analysis and applied the ANOVA (analysis of variance) theory of the Taguchi method to identify the single quality optimal parameter. It then employed the hierarchical structure of the AHP (analytic hierarchy process) theory to establish the positive contrast matrix. After consistency verification, global weight calculation, and priority sequencing, the optimal multi-attribute parameters were obtained. Finally, the experimental results were verified by a Taguchi confirmation experiment and confidence interval calculation. The minimum scribing line width of AZO (200 nm) was 45.6 μm, the minimum scribing line width of the microcrystalline silicon (at 38% crystallinity) was 50.63 μm and the minimum line width of the aluminum thin film (300 nm) was 30.96 μm. The confirmation experiment results were within the 95% confidence interval, verifying that using ultraviolet laser in the isolation scribing process for microcrystalline silicon thin film solar cell has high reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号