首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural changes induced by a 9-GPa pressure in Eu2(MoO4)3 single crystals at room temperature have been studied using x-ray diffraction. It is established that a structural phase transition from the initial tetragonal phase to the new high-pressure tetragonal phase occurs rather than solid-phase amorphization that was observed previously in polycrystalline samples. The samples in the observed transition remain single-crystalline despite a significant difference (ΔV ~ 18%) between the specific volumes of the initial and final phases. It is shown that the transition from the initial state to the high-pressure phase occurs via the formation of broad transition zones featuring a continuous and smooth change of the crystal lattice parameters.  相似文献   

2.
Optical absorption spectra of the trigonal crystal of TbFe3(BO3)4 in the vicinity of the 7F65D4 transition in a Tb3+ ion were studied as a function of temperature (2–70 K) and magnetic field strength (0–60 kOe) at 2 K. The splitting of the excited states of Tb3+ due to both the magnetic ordering of iron and an external magnetic field was determined. Abrupt splitting of the absorption lines of Tb3+ at temperature TN of the magnetic ordering of the subsystem of iron was revealed, suggesting that the nature of such splitting is not entirely magnetic.  相似文献   

3.
Optical absorption spectra in thin [N(CH3)4]2CuCl4 crystals in the thickness range 10 μm ≤ d < 100 μm have been studied. Strengthening of the crystal field has been found with a decrease in the [N(CH3)4]2CuCl4 crystal size. The reasons for absorption band shifts in the visible region depending on the [N(CH3)4]2CuCl4 crystal thickness and the manifestation of a size effect in crystals with an incommensurate superstructure are discussed.  相似文献   

4.
Cascade of phase transitions in GdFe3(BO3)4 at 156, 37, and 9 K has been detected by specific heat measurements and further studied by Raman scattering and Nd3+ spectroscopic probe method. A weakly first-order structural phase transition at 156 K is followed by a second-order antiferromagnetic ordering phase transition at 37 K and a first-order spin-reorientational phase transition at 9 K.  相似文献   

5.
The dielectric and magnetic measurements of the KMnF3 crystals obtained by the Czochralski and Bridgman methods have been performed. Three structural transitions have been observed in the crystals. The mutual arrangement of the temperature of magnetic ordering and the temperature of the lower structural transition determines the number and type of magnetic transitions in these crystals.  相似文献   

6.
The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A “seed” frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A2 mode. The calculated results are in agreement with the known experimental data.  相似文献   

7.
The effect of the lattice deformation on the electronic spectra of TlGaS2, TlGaSe2, and TlInS2 layered semiconductor crystals is analyzed. It is shown that changes in the band gap of these semiconductors due to thermal expansion and a change in the composition under hydrostatic or uniaxial pressure can be described within a unified model of the deformation potential. The main feature of this model is the inclusion of deformation potentials with different signs, which is characteristic of other semiconductors with a layered structure. An analysis of the lattice deformation of the studied semiconductors in terms of the proposed model of the deformation potential has revealed that, in the immediate vicinity of the phase transitions, the crystal lattice under pressure undergo an unusual deformation.  相似文献   

8.
The transmission spectra of HoFe3(BO3) multiferroic single crystals are studied by optical Fourier-transform spectroscopy at temperatures of 1.7–423 K in polarized light in the spectral range 500–10 000 cm–1 with a resolution up to 0.1 cm–1. A new first-order structural phase transition close to the second-order transition is recorded at Tc = 360 K by the appearance of a new phonon mode at 976 cm–1. The reasons for considerable differences in Tc for different samples of holmium ferroborate are discussed. By temperature variations in the spectra of the f–f transitions in the Ho3+ ion, we studied two magnetic phase transitions, namely, magnetic ordering into an easy-plane structure as a second-order phase transition at TN = 39 K and spin reorientation from the ab plane to the c axis as a first-order phase transition at TSR = 4.7 ± 0.2 K. It is shown that erbium impurity in a concentration of 1 at % decreases the spin-reorientation transition temperature to TSR = 4.0 K.  相似文献   

9.
NaNbO3 and (Sr,Ca)TiO3 exhibit an unusual complex sequence of temperature- and pressure-driven structural phase transitions. We have carried out lattice dynamical studies to understand the phonon modes responsible for these phase transitions. Inelastic neutron scattering measurements using powder samples were carried out at the Dhruva reactor, which provide the phonon density of states. Lattice dynamical models have been developed for SrTiO3 and CaTiO3 which have been fruitfully employed to study the phonon spectra and vibrational properties of the solid solution (Sr,Ca)TiO3.   相似文献   

10.
The ferroelectric-antiferroelectric phase transition in the Li0.12Na0.88Ta0.4Nb0.6O3 ceramic solid solution has been studied by the Raman scattering technique. As the temperature approached the transition point from below, we observed an appreciable broadening of the lines associated with the vibrations of the cations occupying octahedral and cubooctahedral cavities of the structure and with the oxygen network vibrations (which implies a substantial increase in disorder on the cation sublattices), as well as a decrease to zero intensity of the 875-cm?1 line corresponding to stretch vibrations of the bridging oxygen in the BO6 octahedral anion in the vicinity of the transition. The temperature dependence of the 875-cm?1 line intensity near the transition was used to study the behavior of the phase transition order parameter η. The behavior of η was found to disagree markedly with the Landau theory of second-order phase transitions. It is shown that discrepancies originate from the increase in disorder in the niobium and tantalum sublattices in the Li0.12Na0.88Ta y Nb1-y O3 solid solution system with increasing y. The order of the transition is lowered.  相似文献   

11.
The thermophysical properties of oxyfluoride (NH4)3NbOF6 were studied in detail over wide ranges of temperatures and pressures. At atmospheric pressure, a sequence of four structural phase transitions was established with the following changes in entropy: ΔS 1 = Rln 2.7, δS 2 = Rln38.3, ΔS 3 = 0.08R, and ΔS 4 = 0.17R. An external hydrostatic pressure was found to narrow the region of existence of the initial cubic phase. A triple point was detected in the p-T diagram; at a pressure above 0.07 GPa, the transition between the tetragonal and monoclinic phases occurs through a distorted high-pressure phase.  相似文献   

12.
13.
The crystal and magnetic structures of Pr0.15Sr0.85MnO3 manganite have been studied by means of powder X-ray and neutron diffraction in the temperature range 10–400 K at high external pressures up to 55 and 4 GPa, respectively. A structural phase transition from cubic to tetragonal phase upon compression was observed, with large positive pressure coefficient of transition temperature dT ct /dP = 28(2) K/GPa. The C-type antiferromagnetic (AFM) ground state is formed below T N 260 K at ambient pressure. While at ambient pressure the structural and magnetic transition temperatures are close, T ct ~ T N , upon compression they become decoupled with T N T ct due to much weaker T N pressure dependence with coefficient dT N /dP = 3.8(1) K/GPa.  相似文献   

14.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

15.
We present the results a study of structure by neutron diffraction and data on the magnetic properties (linear and nonlinear (second and third order) susceptibilities) of polycrystalline La0.88MnO2.95. This compound exhibits an insulator-metal (IM) phase transition at T IM ≈ 253 K (above the Curie temperature, T C ≈ 244 K) and reveals colossal magnetoresistance. The crystal structure is found to be rhombohedral, and the space group is R3c. Analysis of magnetic properties shows that at T* ≈ 258 K > T C , isolated paramagnetic clusters occur in the paramagnetic matrix; their concentration increases upon cooling. We observed no noticeable differences between the temperature evolution of the clustered state of this manganite with its insulator-metal transition and in the insulator La0.88MnO2.91. Possible scenarios of the paramagnet-ferromagnet and I-M transitions in a self-organized clustered structure are discussed.  相似文献   

16.
Phase transitions in thin epitaxial films of BaTiO3 are described phenomenologically in terms of Landau potentials with sixth-and eighth-order terms. It is established that the phase diagram depends on the electrostrictive constant Q 12. The phase diagrams calculated for different values of Q 12 available in the literature differ qualitatively. The dependence of the misfit strain of a film on the film tetragonality at room temperature is found, which makes it possible to determine the thermodynamic path in the phase diagram for a specific film. The dependences of the spontaneous polarization and dielectric constant of a film on the misfit strain at room temperature are constructed.  相似文献   

17.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

18.
The temperature dependences of the permittivity ? and the false-color image patterns obtained by the rotating polarizer method for single crystals of (1 ? x)NaNbO3?x Gd1/3NbO3 (x = 0.003, 0.090) solid solutions with different degrees of diffuseness of the phase transition are investigated. A multifractal analysis of the false-color images has revealed anomalies in the temperature dependences of the parameter ? of the multifractal spectrum. For a sample with a sharp phase transition (x ≈ 0.003), the temperature of this anomaly is in good agreement with the temperature of the jumps in the permittivity ?(T) and birefringence. For an NNG crystal with x ≈ 0.09, which exhibits a diffuse maximum of ?(T), the temperatures of the anomalies of ?(T) differ in the central and peripheral regions, which correlates with the distribution of Gd over the crystal.  相似文献   

19.
We have studied the signs of phase transitions and spatial modulation of the structure in the absorption spectra of an (NCH3)4)2Zn0.8Ni0.2Cl4 crystal. We have observed the existence of phase transitions in the given solid solution at temperatures of 155 K, 168 K, 275 K, 280 K, and 296 K. We have established that the thermooptic memory effect observed in the absorption spectra is completely consistent with a model of defect ordering in the sample in the field of the modulated structure. According to this model, stabilization of the sample in an incommensurable phase leads to fixing of a certain symmetry in the crystal (usually a lower symmetry than the average symmetry of the incommensurable phase) and a metal-halogen complex corresponding to the defect wave. As a result, we observe an appreciable shift of the intra-ionic absorption bands and an increase in their intensity. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 5, pp. 717–723, September–October, 2008.  相似文献   

20.
New data on the specific heat, thermal expansion, and magnetization of the CaMn7O12 phase require a revision of the current concepts of the sequence of phase transitions in this compound. It is found that a spin-glass phase transition occurs in CaMn7O12 at T M = 49 K, whereas the transition at T S = 89 K exhibits the features of a first-order phase transition and thereby is apparently of structural origin. In the range T M < T< T S , the CaMn7O12 compound exhibits negative thermal expansion, which is also indicative of structural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号