共查询到20条相似文献,搜索用时 10 毫秒
1.
The steady mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder in a stream flowing vertically upwards is numerically studied for both cases of heated and cooled cylinders. The governing partial differential equations are transformed into dimensionless forms using an appropriate transformation and then solved numerically using the Keller-box method. The comparison between the solutions obtained and those for a Newtonian fluid is found to be very good. Effects of the mixed convection and elasticity parameters on the skin friction and heat transfer coefficients for a fluid having the Prandtl number equal to one are also discussed. It is found that for some values of the viscoelastic parameter and some negative values of the mixed convection parameter (opposing flow) the boundary layer separates from the cylinder. Heating the cylinder delays separation and can, if the cylinder is warm enough, suppress the separation completely. Similar to the case of a Newtonian fluid, cooling the cylinder brings the separation point nearer to the lower stagnation point. However, for a sufficiently cold cylinder there will not be a boundary layer. 相似文献
2.
Kai-Long Hsiao 《International Journal of Non》2011,46(1):1-8
A magnetic hydrodynamic (MHD) mixed convective heat transfer problem of a second-grade viscoelastic fluid past a wedge with porous suction or injection has been studied. Governing equations include continuity equation, momentum equation and energy equation of the fluid. It has been analyzed by a combination of a series expansion method, the similarity transformation and a second-order accurate finite-difference method. Solutions of wedge flow on the wedge surface have been obtained by a generalized Falkner-Skan flow derivation. Some important parameters have been discussed by this study, which include the Prandtl number (Pr), the elastic number (E), the free convection parameter (G) and the magnetic parameter (M), the porous suction and injection parameter (C) and the wedge shape factor (β). Results indicated that elastic effect (E) in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a wedge. In addition, similar to the results from Newtonian fluid flow and conduction analysis of a wedge, better heat transfer is obtained with a larger G and Pr. 相似文献
3.
The problem of steady laminar mixed convection boundary layer flow of an incompressible viscous fluid along vertical moving
thin needles with variable heat flux for both assisting and opposing flow cases is theoretically considered in this paper.
The governing boundary layer equations are first transformed into non-dimensional forms. The curvature effects are incorporated
into the analysis whereas the pressure variation in the axial direction has been neglected. These equations are then transformed
into similarity equations using the similarity variables, which are solved numerically using an implicit finite-difference
scheme known as the Keller-box method. The solutions are obtained for a blunt-nosed needle (m = 0). Numerical calculations are carried out for various values of the dimensionless parameters of the problem, which include
the mixed convection parameter λ, the Prandtl number Pr and the parameter a representing the needle size. It is shown from the numerical results that the skin friction coefficient, the surface (wall)
temperature and the velocity and temperature profiles are significantly influenced by these parameters. The results are presented
in graphical form and are discussed in detail. 相似文献
4.
5.
6.
The equations governing the free convection boundary-layer flow on a horizontal circular cylinder on which there is a prescribed surface heat flux are solved using a finite-difference scheme. This numerical solution is then used to compare the accuracy of two proposed series expansions, a Blasius expansion and a Görtler-type expansion. It is shown that the former method is better at estimating temperature profiles while the latter is better at estimating velocity profiles.
Nomenclature a radius of the cylinder - g acceleration of gravity - P r Prandtl number - Q prescribed (constant) heat flux - T temperature of the fluid - t 0 temperature of the ambient fluid - u velocity in thex-direction - v velocity in they-direction - x co-ordinate measuring distance round the cylinder - y co-ordinate measuring distance normal to the cylinder - G r Grashof number=g Q a 4/v2 - coefficient of thermal expansion - x thermal conductivity - v kinematic viscosity - w skin friction 相似文献
Bemerkung über die freie Konvektionsgrenzschicht an einem horizontalen Kreiszylinder mit gleichförmigem Wärmestrom
Zusammenfassung Die Grenzschichtgleichungen für die freie Konvektion an einem horizontalen Kreiszylinder mit gleichförmigem Wärmestrom durch die Oberfläche wird mit Hilfe eines finiten Differenzverfahrens gelöst. Die numerisch ermittelten Ergebnisse werden nachher für den Vergleich der Genauigkeit von zwei Reihendarstellungen der Lösung der Grenzschichtsgleichungen benützt. Diese Reihen sind vom Blasiusbzw. Görtier-Typ. Es wird bemerkt, daß die Reihendarstellung von Blasius die Temperaturprofile besser beschreibt, während die Reihenentwicklung der Görtlerschen Art für die Geschwindigkeitsprofile eine gute Übereinstimmung mit der exakten Lösung zeigt.
Nomenclature a radius of the cylinder - g acceleration of gravity - P r Prandtl number - Q prescribed (constant) heat flux - T temperature of the fluid - t 0 temperature of the ambient fluid - u velocity in thex-direction - v velocity in they-direction - x co-ordinate measuring distance round the cylinder - y co-ordinate measuring distance normal to the cylinder - G r Grashof number=g Q a 4/v2 - coefficient of thermal expansion - x thermal conductivity - v kinematic viscosity - w skin friction 相似文献
7.
The onset of double diffusive convection in a viscoelastic fluid layer is studied using a linear and a weak nonlinear stability analyses. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. There is a competition between the processes of thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through oscillatory mode rather than stationary. The effect of Deborah number, retardation parameter, solutal Rayleigh number, Prandtl number, Lewis number on the stability of the system is investigated. It is shown that the critical frequency increases with Deborah number and solutal Rayleigh number while it decreases with retardation parameter and Lewis number. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The transient behaviour of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge-Kutta method. The effect of viscoelastic parameters on heat and mass transfer is brought out. 相似文献
8.
9.
A. MASTROBERARDINO 《应用数学和力学(英文版)》2014,35(2):133-142
In this article, we present accurate analytical solutions for boundary layer flow and heat transfer of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface subject to a transverse uniform magnetic field using the homotopy analysis method (HAM) for two general types of non-isothermal boundary conditions. In addition, we demonstrate that the previously reported analytical solutions for the temperature field given in terms of Kummer's function do not converge at the boundary. We provide a graphical and numerical demonstration of the convergence of the HAM solutions and tabulate the effects of various parameters on the skin friction coefficient and wall heat transfer. 相似文献
10.
A theoretical solution is presented for the convective heat transfer of Giesekus viscoelastic fluid in pipes and channels,
under fully developed thermal and hydrodynamic flow conditions, for an imposed constant heat flux at the wall. The fluid properties
are taken as constant and axial conduction is negligible. The effect of Weissenberg number (We), mobility parameter (α) and Brinkman number (Br) on the temperature profile and Nusselt number are investigated. The results emphasize the significant effect of viscous
dissipation and fluid elasticity on the Nusselt number in all circumstances. For wall cooling and the Brinkman number exceeds
a critical value (Br
1), the heat generated by viscous dissipation overcomes the heat removed at the wall and fluid heats up longitudinally. Fluid
elasticity shifts this critical Brinkman number to higher values. 相似文献
11.
The stability of a viscoelastic fluid in a densely packed horizontal porous layer heated from below is considered using an Oldroyd model. Critical Rayleigh number, wave number, and frequency for overstability are determined by applying the linear stability theory. It is shown that the critical Rayleigh number is invariant under all relevant boundary combinations. Also, it is found that the effect of elasticity of the fluid is to destabilize the system and that of porosity is to stabilize the same. The limiting case of very high Prandtl number and the degenerate case corresponding to the Maxwell model are analyzed in some detail. 相似文献
12.
The two-phase boundary layer in laminar film condensation was solved by Koh for the free convection regime and forced convection
regime using the similarity method. But the problem on mixed convection does not admit similarity solutions. The current work
develops a local nonsimilarity method for the full spectrum of mixed convection, with a generic boundary layer formulation
reduced to two specific cases mathematically identical to Koh’s formulations on the two limiting cases for either free or
forced convection. Other solution methods for mixed convection in the literature are compared and critically evaluated to
ensure a high level of accuracy in the current method. The current solution is used to extend Fujii’s correlation for mixed
convection to the region where the energy convection effect is significant but has been hitherto neglected. The modified Fujii
correlation provides a practical engineering tool for evaluating laminar film condensation with a mixed convection boundary
layer. 相似文献
13.
14.
The influence of elasticity and shear thinning viscosity on the temperature distribution and heat transfer in natural thermal convection is discussed. The numerical investigations are based on a four-parameter Oldroyd constitutive equation, which represents the typical fluid response of dilute solutions and melts. It was found that especially the second normal-stress difference affects the heat transfer mechanism. 相似文献
15.
The boundary layer flow behaviour in a smooth rotating channel with heated walls is measured by particle image velocimetry (PIV). To simulate the real operation environment of an internal coolant channel in a turbine blade, airflow is analysed in a rotating channel, whose four walls are uniformly heated by Indium Tin Oxide (ITO) glass. The flow is measured in the middle plane of the rotating channel with a Reynolds number equal to 10000 and rotation numbers ranging from 0 to 0.52. The results are presented for the boundary layer flow behaviour with and without heated thermal boundary conditions. The buoyancy force generated by the heated walls influences the flow behaviour under rotating conditions. Separated flow occurs, which substantially influences the turbulent flow behaviours. Sometimes, this buoyancy force can determine the flow behaviours. The results also showed that the displacement thickness and the momentum loss thickness present new changes at different radius positions due to the heated thermal boundary conditions. The displacement thicknesses of both the leading and trailing sides with heated walls are both thicker than those of the leading and trailing sides without heated walls. Then, the difference of the boundary layer thickness between these two cases increases with the increase of rotation number. For momentum loss thickness, a sharp drop happens when the rotation number increases to a certain value. At the large radius position, the drop in momentum loss thickness is much greater than that in the small radius position. 相似文献
16.
H.S. Takhar Rama Subba Reddy Gorla Professor Chairman William R. Schoren Research Assistant 《Mechanics Research Communications》1988,15(3)
Using the theory of micropolar fluids developed by Eringen, the transverse curvature effects on axisymmetric free convection boundary layer flow of a micropolar fluid past slender vertical cones are investigated. The case of constant surface heat flux is considered in this paper. Using perturbation techniques, the governing equations for momentum, angular momentum and energy have been solved numerically. Graphical representations for the velocity, angular velocity and thermal functions are presented for various physical and fluid property parameters. 相似文献
17.
Two-dimensional convection in a horizontal fluid layer with spatially periodic boundary temperatures
《Fluid Dynamics Research》1991,7(3-4):181-200
Two-dimensional thermal convection in a fluid layer confined between two horizontal rigid walls kept at spatially periodic temperatures is investigated by direct numerical simulations. With increasing the Rayleigh number, convection evolves from a steady state to a temporally chaotic flow. It is observed that the transition to the chaos occurs via quasi-periodic states with two or three basic frequencies or via sequences of period-doubling bifurcations, according to the boundary temperature distributions. 相似文献
18.
R. E. Hayes 《Transport in Porous Media》1990,5(3):231-245
Numerical investigations of the nature of the fluid flow pattern and heat transfer at the boundary layer of a packed bed are reported. A volume averaged Navier-Stokes equation is used to predict the fluid flow and a volume averaged heat balance equation the heat transfer. A variable porosity in the packing is assumed in the region near the wall. Simulations are performed using a modified penalty Galerkin finite element method. The case of fully developed hydrodynamic flow and developing thermal flow is studied. The Nusselt number is found to depend on the Reynolds number, Graetz number and ratio of thermal conductivity of the solid and fluid phases. Comparison is made to some experimental literature values.Nomenclature
A
constant
- [A]
Navier-Stokes type matrix
-
B
constant
- [B]
divergence matrix
-
C
p
constant pressure heat capacity
-
d
characteristic length
-
D
p
particle diameter
-
D
t
tube diameter
- {F}
solicitation vector
- Gz
Graetz number, z D
t
–1
Pr
f
Re
p
-
k
permeability term
-
k
f
Thermal conductivity of the fluid phase
-
k
s
Thermal conductivity of the solid phase
- [K]
coefficient matrix for temperature equation
-
n
normal vector
-
P
pressure
- Pr
f
Prandtl number for the fluid
f
C
p
k
f
-1
-
r
radial coordinate
-
R
t
tube radius
-
R
residual
-
R
m
residual
- Re
p
Reynolds number for particle,
-
t
tortuosity factor
-
T
temperature
-
interstitial velocity
-
z
axial coordinate
-
effective thermal conductivity
-
penalty parameter
-
boundary of solution domain
-
porosity
-
viscosity
-
density
-
test function
-
solution domain
-
test function 相似文献
19.
Buoyancy-driven convection of a viscoelastic fluid saturated in an open-top porous square box is studied based on a modified Darcy's law. The results are compared with those for a Newtonian fluid under the same boundary conditions and those for the viscoelastic fluid under a closed-top boundary. In particular, the critical Darcy–Rayleigh number Ra for onset of convection is determined first by using the linear stability theory. Then the effects of the relaxation time and the retardation time of the viscoelastic fluid on the heat transfer rate and the flow pattern are investigated numerically. The results reveal some interesting properties of thermal convection for the viscoelastic fluid. The relaxation time makes the fluid easier to destabilize while the retardation time tends to stabilize the fluid motion in the porous medium, and larger heat transfer rate can be achieved with larger value of the relaxation time and decreased retardation time. Furthermore, larger relaxation time facilitates earlier bifurcation of the flow pattern as Ra increases, but bifurcation can be postponed with increased retardation time. For larger ratio of relaxation time over retardation time, the flow pattern is more complicated and the frequency of flow oscillation also increases. Finally, large ratio of relaxation time over retardation time can make the open-top boundary impermeable due to the viscoelastic effect on the fluid. 相似文献