首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hepatocellular carcinoma (HCC) is the most common malignant liver tumor. Analysis of human serum from HCC patients using two-dimensional gel electrophoresis (2DE) combined with nano-high-performance liquid chromatography electrospray ionization tandem mass spectrometry (nano-HPLC–ESI-MS/MS) identified fourteen different proteins differentially expressed between HCC patients and the control group. Twelve proteins were up-regulated and two down-regulated. By using nano-HPLC–MS/MS system to analyze proteome in human serum, 317 proteins were identified, twenty-nine of which to high confidence levels (protein matched at last two unique peptide sequences). Of these twenty-nine proteins, six were present only in HCC patients and may serve as biomarkers for HCC. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Digests from ten gel bands containing low abundance proteins were analyzed by both matrix-assisted laser desorption/ionization ion trap (MALDI-IT) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) methods. MALDI-TOF techniques were able to identify only one protein from all 10 gel bands, while MALDI-IT identified eight proteins from the same 10 bands. The ability to perform MS/MS experiments with a MALDI-IT instrument leads to protein identifications based on both peptide molecular mass and sequence information, and is much less prone to errors and uncertainties introduced by peptide fingerprinting methodologies in which protein identification is based on peptide molecular masses alone.  相似文献   

3.
Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is a powerful tool to separate thousands of polypeptides and to highlight the modification of protein expression in malignant diseases. By applying 2-D PAGE to ten normal human kidney and ten homologous renal cell carcinoma (RCC) tissues, we found two peptides in all ten normal tissues but not in RCCs and, conversely, two peptides were detected in all RCCs but not in normal tissues. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and internal sequence analysis, the two first peptides were identified as two isoforms of plasma glutathione peroxidase (GPxP). The two other peptides isolated in all RCCs but not in normal tissues were identified by N-terminal sequence analysis as multimeric forms of manganese superoxide dismutase (Mn-SOD). No multimeric Mn-SODs and only two monomeric forms were detected in normal tissues. GPxP and Mn-SOD are metallo-enzymes encoded on chromosome 5q32 and on chromosome 6p25, respectively. Their regions are within the locus 5q21-->qter and 6q21-6q27 on which deletions and translocations are described in some cytogenetic studies of RCC transformation. Therefore, our results might suggest a correlation between the modified expression of GPxP and Mn-SOD in tumor tissues and chromosomal modifications, and that the two proteins may be putative markers for diagnosis of RCC.  相似文献   

4.
HeLa cells are widely used for all kinds of in vitro studies in biochemistry, biology and medicine. Knowledge on protein expression is limited and no comprehensive study on the proteome of this cell type has been reported so far. We applied proteomics technologies to analyze the proteins of the HeLa cell line. The proteins were analyzed by two-dimensional (2D) gel electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry (MS) on the basis of peptide mass fingerprinting, following in-gel digestion with trypsin. Approximately 3000 spots, excised from six two-dimensional gels, were analyzed. The analysis resulted in the identification of about 1200 proteins that were the products of 297 different genes. The HeLa cell database includes proteins with important functions and unknown functions, representing today one of the largest two-dimensional databases for eukaryotic proteomes and forming the basis for future expressional studies at the protein level.  相似文献   

5.
In the present study, we aimed to globally profile the proteins involved in colorectal carcinoma(CRC), in order to find clues to the pathological process of CRC. Pairs of malignant tissues and their adjacent healthy tissues from patients with colorectal cancer were subject to differential proteomics analysis. Two dimensional electrophoresis coupled with mass spectrometry(2-DE/MS) was used to identify differentially expressed proteins between pairs of tissue samples. A list of proteins relevant to the progression of colorectal tumor was identified by two dimensional gel electrophoresis(2-DE)-based proteomics approach. Among the identified proteins, vinculin was found to be remarkably down-regulated in colorectal carcinoma tissues. In addition, three phosphorylation modifications within the isolated vinculin were identified by in-depth liquid chromatography-tandem mass spectrometry(LC-MS/MS) analysis. Our results provide a basis for further understanding the pathological significance of vinculin in the regulation of carcinogenesis, invasion and metastasis of colorectal tumors.  相似文献   

6.
应用蛋白质组学方法分析比较猪晶状体中央和周边上皮细胞的蛋白质表达差异。将32个正常猪晶状体前囊膜所附着于的上皮细胞分为中央和周边两部分,经二维凝胶电泳分离和凝胶考马斯亮兰染色,质谱(MALDI—TOF—MS)鉴定差异蛋白质斑点,并对鉴定的蛋白质进行分类。结果显示来自中央与周边区域的猪晶体上皮细胞的蛋白在二维凝胶上分别有801和886个蛋白质斑点,鉴定出差异表达蛋白84个:差异表达的蛋白质在功能上有一定趋向性,主要涉及代谢、细胞骨架、信号转导/细胞周期/转录因子等。  相似文献   

7.
In order to identify potential protein targets involved in colorectal cancer(CRC), we used a liquid chromatography coupled with mass spectrometry(LC-MS)/MS-based proteomics approach to characterize global protein expression patterns in malignant tissues and their adjacent healthy tissues from Dukes C stage CRC patients. A total number of 34 differentially expressed proteins were detected and identified by LC-MS/MS and database searching, which are supposed to be relevant to progression of colorectal tumor. Among these proteins, nucleophosmin 1(NPM1) was found to be remarkably up-regulated in colorectal carcinoma tissues, as compared with that in their normal counterparts. The results presented here could provide clues to elucidate the pathological significance of NPM1 in regulation of carcinogenesis of Dukes C stage colorectal tumors.  相似文献   

8.
Previous studies demonstrated that three-dimensional(3D) multicellular tumor spheroids(MCTS) could more closely mimic solid tumors than two-dimensional(2D) cancer cells in terms of the spatial structure, extracellular matrix-cell interaction, and gene expression pattern. However, no study has been reported on the differences in lipid metabolism and distribution among 2D cancer cells, MCTS, and solid tumors. Here, we used Hep G2 liver cancer cell lines to establish these three cancer models. The ...  相似文献   

9.
Direct analysis of laser capture microdissected malignant and normal endometrial epithelium using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (MS) was able to detect a number of proteins that are overexpressed in malignant epithelial cells. A total of 16 physiologic and malignant endometrial samples were laser capture microdissected, including four proliferative and four secretory endometria, and eight endometrioid adenocarcinomas. Two of these proteins, at 10,834 and 10,843 Da, likely correspond to calgranulin A and chaperonin 10, two proteins that had previously been identified in endometrioid adenocarcinoma in whole tissue homogenate by MS analysis. Direct analysis by MALDI-MS not only confirms that these proteins are overexpressed in endometrial carcinoma, but also localizes them to the epithelial cells, the expected cancer site.  相似文献   

10.
The identification of proteins differentially expressed between cancer and normal cells is vital for the development of cancer diagnostics, therapeutics and vaccines. Using a ProteinChip Biomarker System (Ciphergen Biosystems, Fremont, CA) which combines ProteinChip technology with time-of-flight mass spectrometry, we have developed a simple method to screen and identify differentially secreted proteins from tumor cell lines. Mass spectra of the range of proteins secreted from normal B-cells were generated along with those secreted from Epstein-Barr virus transformed B-cells. A mass peak at m/z = 4972.1 that was highly over-represented in the transformed B-cell line was chosen for identification and purified by reversed phase chromatography with concomitant monitoring of fractions by SELDI-TOF MS. The resulting purified protein was digested with trypsin and the peptide masses derived from the SELDI-TOF spectrum were used to search the public databases for protein identification. Fragment matching of the resulting peptides identified the protein as thymosin beta-4. Using LC-electrospray ionization MS/MS, the identity of this protein was confirmed. Thymosin beta-4 is a known marker in LCLs establishing the utility of this method to discover and identify proteins differentially expressed between cancers and their matched normal counterparts.  相似文献   

11.
We paper describe a mass spectrometric approach generally applicable for the rapid identification and characterization of proteins isolated by two-dimensional gel electrophoresis (2-DE). The highly sensitive nanoflow-electrospray mass spectrometry employing a quadrupole-time of flight mass spectrometer was used for the direct identification of proteins from the peptide mixture generated from only one high resolution 2-DE gel without high performance liquid chromatography (HPLC) separation or Edman sequencing. Due to the high sensitivity and high mass accuracy of the instrument employed, this technique proved to be a powerful tool for the identification of proteins from femtomole amounts of materials. We applied the technique for the investigation of Burkitt lymphoma BL60 cell proteins. This cell line has been used as a model to assign apoptosis-associated proteins by subtractive analysis of normal and apoptotic cells. From the nuclear fraction of these cells, 36 protein spots were examined, from only one micropreparative Coomassie Brilliant Blue R-250 stained gel, after proteolytic digestion by matrix assisted laser desorption ionization (MALDI) and nanospray mass spectrometry (MS). In combination with database searches, of 33 proteins were successfully identified by nanospray-MS/MS-sequencing of up to eight peptides per protein. Three proteins were new proteins not listed in any of the available databases. Some of the identified proteins are known to be involved in apoptosis processes, the others were common proteins in the eukaryotic cell. The given technique and the protein data are the basis for construction of a database to compare normal and apoptosis-induced cells and, further, to enable fast screening of drug impact in apoptosis-associated processes.  相似文献   

12.
Two-dimensional gel electrophoresis, bioinformatics, and mass spectrometry are key analysis tools in proteome analysis. The further characterization of post-translational modifications in gel-separated proteins relies fully on data obtained by mass spectrometric analysis. In this study, stress-induced changes in protein expression in Saccharomyces serevisiae were investigated. A total of eleven spots on a silver-stained two-dimensional (2-D) gel were identified by matrix-assisted laser desorption/ionization (MALDI) peptide mass mapping to represent C and/or N-terminal processed forms of enolase 2. The processing sites were determined by MALDI peptide mass mapping using a variety of proteolytic enzymes, by optimizing the sample preparation procedure and by specific labeling of all C-termini derived from in-gel digestion using a buffer containing 16O:18O (1:1). Out of eleven processed forms of enolase 2, six were fully characterized and the approximate processing sites identified for the remaining five.  相似文献   

13.
Rapamycin is an antifungal drug with antitumor activity and acts inhibiting the mTOR complex. Due to drug antitumor potential, the aim of this study was to evaluate its effect on a preclinical model of primary mammary gland tumors and their metastases from female dogs. Four cell lines from our cell bank, two from primary canine mammary tumors (UNESP-CM1, UNESP-CM60) and two metastases (UNESP-MM1, and UNESP-MM4) were cultured in vitro and investigated for rapamycin IC50. Then, cell lines were treated with rapamycin IC50 dose and mRNA and protein were extracted in treated and non-treated cells to perform AKT, mTOR, PTEN and 4EBP1 gene expression and global proteomics by mass spectrometry. MTT assay demonstrated rapamycin IC50 dose for all different tumor cells between 2 and 10 μM. RT-qPCR from cultured cells, control versus treated group and primary tumor cells versus metastatic tumor cells, did not shown statistical differences. In proteomics were found 273 proteins in all groups, and after data normalization 49 and 92 proteins were used for statistical analysis for comparisons between control versus rapamycin treatment groups, and metastasis versus primary tumor versus metastasis rapamycin versus primary tumor rapamycin, respectively. Considering the two statistical analysis, four proteins, phosphoglycerate mutase, malate dehydrogenase, l-lactate dehydrogenase and nucleolin were found in decreased abundance in the rapamycin group and they are related with cellular metabolic processes and enhanced tumor malignant behavior. Two proteins, dihydrolipoamide dehydrogenase and superoxide dismutase, also related with metabolic processes, were found in higher abundance in rapamycin group and are associated with apoptosis. The results suggested that rapamycin was able to inhibit cell growth of mammary gland tumor and metastatic tumors cells in vitro, however, concentrations needed to reach the IC50 were higher when compared to other studies.  相似文献   

14.
The isotope-coded affinity tag (ICAT) [1] technology enables the concurrent identification and comparative quantitative analysis of proteins present in biological samples such as cell and tissue extracts and biological fluids by mass spectrometry. The initial implementation of this technology was based on microcapillary chromatography coupled on-line with electrospray ionization tandem mass spectrometry. This implementation lacked the ability to select proteins for identification based on their relative abundance and therefore to focus on differentially expressed proteins. In order to improve the sample throughput of this technology, we have developed a two-step approach that is focused on those proteins for which the abundance changes between samples: First, a new software program for the automated quantification of ICAT reagent labeled peptides analyzed by microcapillary electrospray ionization time-of-flight mass spectrometry determines those peptides that differ in their abundance and second, these peptides are identified by tandem mass spectrometry using an electrospray quadrupole time-of flight mass spectrometer and sequence database searching. Results from the application of this approach to the analysis of differentially expressed proteins secreted from nontumorigenic human prostate epithelial cells and metastatic cancerous human prostate epithelial cells are shown.  相似文献   

15.
When cells are first exposed to low levels of oxidative stress, they develop a resistance to a subsequent challenge of the same stress, even at higher levels. Although some protein(s) induced by oxidative stress likely mediated this adaptive response, the nature of these proteins is unknown. In this study, the total proteins extracted from human U937 leukemia cells exposed to 50 micromM H(2)O(2) for 24 h to induce an optimal protective response were analyzed by two-dimensional polyacrylamide gel electrophoresis. H(2)O(2) treatment induced elevation of level of 34 protein spots. An analysis of these spots by a matrix associated laser desorption/ionization time-of-flight mass spectrometry identified 28 of the H(2)O(2)-induced proteins. These include proteins involved in energy metabolism, translation and RNA processing, chaperoning or mediating protein folding, cellular signaling, and redox regulation, as well as a mitochondrial channel component, and an actin-bundling protein. Therefore, it appears that the cellular adaptation to oxidative stress is a complex process, and is accompanied by a modulation of diverse cellular functions.  相似文献   

16.
Analysis of interactive networks between proteins and other molecular constituents is of paramount importance to delineate complex cellular processes. In order to facilitate this process, new technologies that allow rapid, high-throughput parallel screening, as well as identification of constituents, are necessary. A particularly powerful combination in this regard could be the use of multiprotein microarrays coupled with mass spectrometry (MS). In the initial step of the method development we applied MS to single-protein microarrays. We demonstrated that even a simplified version of the method allows rapid parallel label-free assay of specific protein interactions with multiple metabolites derived from complex artificial and natural mixtures. The microarrays fabricated by the electrospray deposition technique and cross-linked in glutaraldehyde vapor were brought into contact with droplets of solution containing either a natural extract of baker's yeast cells or an artificial cocktail of metabolites. After washing, the microarrays were placed into 75% methanol to denature proteins and release specifically bound metabolites. The eluates were then analyzed by electrospray ionization mass spectrometry (ESI-MS) to simultaneously detect all the metabolites bound. Such a procedure applied to ten different proteins demonstrated that 50-400 ng of cross-linked protein is enough to obtain ion intensities from metabolites that are well distinguishable above noise. The compatibility of microplates and different microarray designs with MS detection is discussed.  相似文献   

17.
When presented with a mixture of intact proteins, electrospray ionization with Fourier-transform mass spectrometry (ESI-FTMS) has the capability to obtain direct fragmentation information from isolated ions. However, the automation of this capability has not been achieved to date. We have developed software for unattended acquisition of protein tandem mass spectrometry (MS/MS) data and batch processing of the resulting files for identification of whole proteins. Mixtures of both protein standards (8-29 kDa) and Methanococcus jannaschii cytosolic proteins (up to six components + 20 kDa) were infused via an autosampler, and MS/MS data were acquired without human intervention. The acquisition software recognizes ESI charge state patterns, generates protein-specific isolation waveforms on-the-fly, and fragments ions using two different infrared laser times. In addition to protein standards, five wild-type proteins (7-14 kDa) were identified automatically with 100% sequence coverage from the M. jannaschii database. The software underpins a measurement platform for sample-dependent acquisition of MS/MS data for whole proteins, a critical step to realize proteomics with 100% sequence coverage in a higher throughput setting.  相似文献   

18.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been used to rapidly profile the protein content of human cell lysates from MCF-10 cell and variant lines. The method was used to study the protein profiles of these cells as they progressed from normal breast epithelium to fully malignant cells. Distinct differences in the protein profiles were observed with progression, and specific proteins associated with carcinogenesis (p53, c-myc, and c-erbB-2) were heavily expressed in these cells as detected by MALDI-TOFMS. These proteins were also isolated using non-porous reversed-phase high performance liquid chromatography (NP-RP-HPLC) and mass analyzed by MALDI-TOFMS to provide molecular weight information without interference from other proteins in the whole cell lysates, and to avoid suppression effects in mixtures of proteins detected by MALDI-TOFMS. In order to confirm the identity of these oncoproteins, the cell lysates were subjected to one-dimensional (1-D) gel separation and subsequently electroblotted onto a poly(vinylidene difluoride) (PVDF) membrane for further analysis. Trypsin and cyanogen bromide digestions were performed on these proteins eluted from excised PVDF bands which were then analyzed by MALDI-TOFMS. The identity of these proteins was confirmed by database matching procedures.  相似文献   

19.
Giant cell tumors of bone (GCT) are benign tumors that show a locally aggressive nature and affect bones’ architecture. Recently, cryoablation and irradiation treatments have shown promising results in GCT patients with faster recovery and less recurrence and metastasis. Therefore, it became a gold standard surgical treatment for patients. Hence, we have compared GCT-untreated, cryoablation, and irradiation-treated samples to identify protein alterations using high-frequency liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Our label-free quantification analysis revealed a total of 107 proteins (p < 0.01) with 26 up-regulated (<2-folds to 5-fold), and 81 down-regulated (>0.1 to 0.5 folds) proteins were identified from GCT-untreated and treated groups. Based on pathway analysis, most of the identified up-regulated proteins involved in critical metabolic functions associated with tumor proliferation, angiogenesis, and metastasis. On the other hand, the down-regulated proteins involved in glycolysis, tumor microenvironment, and apoptosis. The observed higher expressions of matrix metalloproteinase 9 (MMP9) and TGF-beta in the GCT-untreated group associated with bones’ osteolytic process. Interestingly, both the proteins showed reduced expressions after cryoablation treatment, and contrast expressions identified in the irradiation treated group. Therefore, these expressions were confirmed by immunoblot analysis. In addition to these, several glycolytic enzymes, immune markers, extracellular matrix (ECM), and heat shock proteins showed adverse expressions in the GCT-untreated group were identified with favorable regulations after treatment. Therefore, the identified expression profiles will provide a better picture of treatment efficacy and effect on the molecular environment of GCT.  相似文献   

20.
The field of proteomics involves the combined application of advanced separation techniques, mass spectrometry, and bioinformatics tools to characterize proteins in complex biological mixtures. Here we report the identification of nine proteins from the human pituitary proteome, using the proteomics approach. The pituitary proteins were separated by two-dimensional electrophoresis, and were visualized by silver staining. The proteins of interest were subjected to in-gel digestion with trypsin, and the masses of the resulting peptides were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This tryptic mass map was used to identify the proteins through a search of a protein-sequence database. The identified proteins include important hormones, and enzymes with various catalytic activities. These proteins will be used to construct a two-dimensional reference database of the human pituitary. This database will be employed to study changes in the pituitary proteome that are associated with the formation of pituitary tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号