首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, an ovoidal fibration is used to show that any two ovoids of PG(3, q), q even, sharing a polarity, must meet in an odd number of points. This result was previously known only when one of the ovoids was an elliptic quadric or a Tits ovoid. It is also shown that an ovoid and an elliptic quadric of PG(3, q), sharing all of their tangents, must meet in 1 (mod 4) points.   相似文献   

2.
We use the representation ${T_2(\mathcal{O})}$ for Q(4, q) to show that maximal partial ovoids of Q(4, q) of size q 2 ? 1, qp h , p an odd prime, h > 1, do not exist. Although this was known before, we give a slightly alternative proof, also resulting in more combinatorial information of the known examples for q an odd prime.  相似文献   

3.
This paper is a survey on the existence and non-existence of ovoids and spreads in the known finite generalized quadrangles. It also contains the following new results. We prove that translation generalized quadrangles of order (s,s 2), satisfying certain properties, have a spread. This applies to three known infinite classes of translation generalized quadrangles. Further a new class of ovoids in the classical generalized quadranglesQ(4, 3 e ),e3, is constructed. Then, by the duality betweenQ(4, 3 e ) and the classical generalized quadrangleW (3 e ), we get line spreads of PG(3, 3 e ) and hence translation planes of order 32e . These planes appear to be new. Note also that only a few classes of ovoids ofQ(4,q) are known. Next we prove that each generalized quadrangle of order (q 2,q) arising from a flock of a quadratic cone has an ovoid. Finally, we give the following characterization of the classical generalized quadranglesQ(5,q): IfS is a generalized quadrangle of order (q,q 2),q even, having a subquadrangleS isomorphic toQ(4,q) and if inS each ovoid consisting of all points collinear with a given pointx ofS\S is an elliptic quadric, thenS is isomorphic toQ(5,q).  相似文献   

4.
This paper is a contribution to the classification of ovoids. We show, under some rather technical assumptions, that if an ovoid of PG(3, q) has a pencil of monomial ovals, then it is either an elliptic quadric or a Tits ovoid. Further, we show that if an ovoid of PG(3, q) has a bundle of translation ovals, again under some extra assumptions, then the ovoid is an elliptic quadric or a Tits ovoid.  相似文献   

5.
A Tallini set in a projective space P is a set Q of points of P such that each line not contained in Q intersects Q in at most two points. We prove that if P is a finite projective space with odd order q > 3 and dimension d > 2 and if |Q| > qd ? 1 + 2qd ? 3 + qd ? 4 + … + 1, then Q is essentially an orthogonal quadric. The proof of this theorem is based on a characterization of the orthogonal quadrics in every finite dimensional projective space (with possibly infinite order).  相似文献   

6.
Bicovering arcs in Galois affine planes of odd order are a powerful tool for the construction of complete caps in spaces of arbitrarily higher dimensions. The aim of this paper is to investigate whether the arcs contained in elliptic cubic curves are bicovering. As a result, bicovering k-arcs in AG(2,q) of size kq/3 are obtained, provided that q?1 has a prime divisor m with 7<m<(1/8)q 1/4. Such arcs produce complete caps of size kq (N?2)/2 in affine spaces of dimension N≡0(mod4). When q=p h with p prime and h≤8, these caps are the smallest known complete caps in AG(N,q), N≡0(mod4).  相似文献   

7.
This article presents a spectrum result on maximal partial ovoids of the generalized quadrangle Q(4,q), q even. We prove that for every integer k in an interval of, roughly, size [q2/10,9q2/10], there exists a maximal partial ovoid of size k on Q(4,q), q even. Since the generalized quadrangle W(q), q even, defined by a symplectic polarity of PG(3,q) is isomorphic to the generalized quadrangle Q(4,q), q even, the same result is obtained for maximal partial ovoids of W(q), q even. As equivalent results, the same spectrum result is obtained for minimal blocking sets with respect to planes of PG(3,q), q even, and for maximal partial 1-systems of lines on the Klein quadric Q+(5,q), q even.  相似文献   

8.
It is shown that if a plane of PG(3,q),q even, meets an ovoid in a pointed conic, then eitherq=4 and the ovoid is an elliptic quadric, orq=8 and the ovoid is a Tits ovoid.  相似文献   

9.
This article investigates cyclic completek-caps in PG(3,q). Namely, the different types of completek-capsK in PG(3,q) stabilized by a cyclic projective groupG of orderk, acting regularly on the points ofK, are determined. We show that in PG(3,q),q even, the elliptic quadric is the only cyclic completek-cap. Forq odd, it is shown that besides the elliptic quadric, there also exist cyclick-caps containingk/2 points of two disjoint elliptic quadrics or two disjoint hyperbolic quadrics and that there exist cyclick-caps stabilized by a transitive cyclic groupG fixing precisely one point and one plane of PG(3,q). Concrete examples of such caps, found using AXIOM and CAYLEY, are presented.  相似文献   

10.
We show that if an ovoid of Q (4,q),q even, admits a flock of conics then that flock must be linear. It follows that an ovoid of PG (3,q),q even, which admits a flock of conics must be an elliptic quadric. This latter result is used to give a characterisation of the classical example Q -(5,q) among the generalized quadrangles T 3( ), where is an ovoid of PG (3q) and q is even, in terms of the geometric configuration of the centres of certain triads.  相似文献   

11.
Consider these two types of positive square-free integers d≠ 1 for which the class number h of the quadratic field Q(√d) is odd: (1) d is prime∈ 1(mod 8), or d=2q where q is prime ≡ 3 (mod 4), or d=qr where q and r are primes such that q≡ 3 (mod 8) and r≡ 7 (mod 8); (2) d is prime ≡ 1 (mod 8), or d=qr where q and r are primes such that qr≡ 3 or 7 (mod 8). For d of type (2) (resp. (1)), let Π be the set of all primes (resp. odd primes) pN satisfying (d/p) = 1. Also, let δ :=0 (resp. δ :=1) if d≡ 2,3 (mod 4) (resp. d≡ 1 (mod 4)). Then the following are equivalent: (a) h=1; (b) For every p∈П at least one of the two Pellian equations Z 2-dY 2 = ±4δ p is solvable in integers. (c) For every p∈П the Pellian equation W 2-dV 2 = 4δ p 2 has a solution (w,v) in integers such that gcd (w,v) divides 2δ.  相似文献   

12.
A cap on a non-singular quadric over GF(2) is a set of points that are pairwise non-polar; equivalently the join of any two of the points is a chord. A non-secant set of the quadric is a set of points off the quadric that are pairwise non-polar; equivalently the join of any two of the points is skew to the quadric. We determine all the maximal caps and all the maximal non-secant sets of all non-singular quadrics over GF(2); and also all the maximal sets of non-polar points for symplectic polarities over GF(2). The classification is in terms of caps of greatest size on elliptic quadrics Q 8k+3 (2), hyperbolic quadrics Q + 8k+7 (2) and on quadrics Q 4k+2(2), and of non-secant sets of greatest size of Q 8k+1 (2), Q + 8k+5 (2) and Q 4k (2), for all quadrics of these types that occur as sections of the parent quadric or belong to the symplectic polarity. The sets of greatest size for these types of quadrics are larger than for other types. The results have implications about the non-existence of ovoids and the exterior sets of Thas. Only one part of the simple geometric inductive argument extends to larger ground fields.  相似文献   

13.
In PG(4,q2), q odd, let Q(4,q2) be a non‐singular quadric commuting with a non‐singular Hermitian variety H(4,q2). Then these varieties intersect in the set of points covered by the extended generators of a non‐singular quadric Q0 in a Baer subgeometry Σ0 of PG(4,q2). It is proved that any maximal partial ovoid of H(4,q2) intersecting Q0 in an ovoid has size at least 2(q2+1). Further, given an ovoid O of Q0, we construct maximal partial ovoids of H(4,q2) of size q3+1 whose set of points lies on the hyperbolic lines 〈P,X〉 where P is a fixed point of O and X varies in O\{P}. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 307–313, 2009  相似文献   

14.
The known examples of embedded unitals (i.e. Hermitian arcs) in PG(2, q 2) are B-unitals, i.e. they can be obtained from ovoids of PG(3, q) by a method due to Buekenhout. B-unitals arising from elliptic quadrics are called BM-unitals. Recently, BM-unitals have been classified and their collineation groups have been investigated. A new characterization is given in this paper. We also compute the linear collineation group fixing the B-unital arising from the Segre-Tits ovoid of PG(3, 2 r ), r3 odd. It turns out that this group is an Abelian group of order q 2.Research supported by MURST.  相似文献   

15.
In [2] R. C. Bose gives a sufficient condition for the existence of a (q, 5, 1) difference family in (GF(q), +)—where q ≡ 1 mod 20 is a prime power — with the property that every base block is a coset of the 5th roots of unity. Similarly he gives a sufficient condition for the existence of a (q, 4, 1) difference family in (GF(q, +)—where q ≡ 1 mod 12 is a prime power — with the property that every base block is the union of a coset of the 3rd roots of unity with zero. In this article we replace the mentioned sufficient conditions with necessary and sufficient ones. As a consequence, we obtain new infinite classes of simple difference families and hence new Steiner 2-designs with block sizes 4 and 5. In particular, we get a (p, 5, 1)-DF for any odd prime p ≡ 2, 3 (mod 5), and a (p, 4, 1)-DF for any odd prime p ≡ 2 (mod 3). © 1995 John Wiley & Sons, Inc.  相似文献   

16.
In [1] S. ILKKA conjectured that pqeudoregular points of an elliptic quadric ofAG(2,q),q odd, only exist for small values ofq. In [3] B. SEGRE proves that an elliptic quadric ofAG(2,q),q odd, has pseudoregular points iffq=3 or 5. In [2], however, F. KáRTESZI shows that an elliptic quadric ofAG(2,7) has eight pseudoregular points. In this note we prove that part of B. Segre's proof is not correct, and that an elliptic quadric ofAG(2,q),q odd, has pseudoregular points iffq=3, 5 or 7.  相似文献   

17.
It is shown that if a plane of PG(3,q), q even, meets an ovoidin a conic, then the ovoid must be an elliptic quadric. Thisis proved by using the generalized quadrangles T2(C) (C a conic),W(q) and the isomorphism between them to show that every secantplane section of the ovoid must be a conic. The result thenfollows from a well-known theorem of Barlotti.  相似文献   

18.
Thas  J. A. 《Geometriae Dedicata》1981,10(1-4):135-143
LetP be a finite classical polar space of rankr, r2. An ovoidO ofP is a pointset ofP, which has exactly one point in common with every totally isotropic subspace of rankr. It is proved that the polar spaceW n (q) arising from a symplectic polarity ofPG(n, q), n odd andn > 3, that the polar spaceQ(2n, q) arising from a non-singular quadric inPG(2n, q), n > 2 andq even, that the polar space Q(2n + 1,q) arising from a non-singular elliptic quadric inPG(2n + 1,q), n > 1, and that the polar spaceH(n,q 2) arising from a non-singular Hermitian variety inPG(n, q 2)n even andn > 2, have no ovoids.LetS be a generalized hexagon of ordern (1). IfV is a pointset of order n3 + 1 ofS, such that every two points are at distance 6, thenV is called an ovoid ofS. IfH(q) is the classical generalized hexagon arising fromG 2 (q), then it is proved thatH(q) has an ovoid iffQ(6, q) has an ovoid. There follows thatQ(6, q), q=32h+1, has an ovoid, and thatH(q), q even, has no ovoid.A regular system of orderm onH(3,q 2) is a subsetK of the lineset ofH(3,q 2), such that through every point ofH(3,q 2) there arem (> 0) lines ofK. B. Segre shows that, ifK exists, thenm=q + 1 or (q + l)/2.If m=(q + l)/2,K is called a hemisystem. The last part of the paper gives a very short proof of Segre's result. Finally it is shown how to construct the 4-(11, 5, 1) design out of the hemisystem with 56 lines (q=3).  相似文献   

19.
We define the notion of a translation ovoid in the classical generalized quadrangles and hexagons of order q, and we enumerate all known examples; translation spreads are defined dually. A modification of the known ovoids in the generalized hexagon H(q), q=32h+1, yields new ovoids of that hexagon. Dualizing and projecting along reguli, we obtain an alternative construction of the Roman ovoids due to Thas and Payne. Also, we construct a new translation spread in H(q) for any 1 mod 3, q odd, with the property that any projection along reguli yields the classical ovoid in the generalized quadrangle Q(4,q). Finally, we prove that for q odd, the new example is the only non-Hermitian translation spread in H(q) with the property that any projection along reguli yields the classical ovoid in Q(4,q).  相似文献   

20.
In this paper we prove that in a projective space of dimension three and orderq the two plane characterk-sets fork {q 2+ 1,(q+1)2} are of the same type as the elliptic or the hyperbolic quadric, respectively. As a corollary we obtain a characterization of the elliptic and the hyperbolic quadrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号