共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Zhongkai Huang Jinfeng Qu Xiangyang Peng Wenliang Liu Kaiwang Zhang Xiaolin Wei Jianxin Zhong 《固体物理学:研究快报》2014,8(5):436-440
By performing density functional theory calculations, we studied the quantum confinement in charged graphene quantum dots (GQDs), which is found to be clearly edge and shape dependent. It is found that the excess charges have a large distribution at the edges of the GQD. The resulting energy spectrum shift is very nonuniform and hence the Coulomb diamonds in the charge stability diagram vary irregularly, in good agreement with the observed nonperiodic Coulomb blockade oscillation. We also illustrate that the level statistics of the GQDs can be described by a Gaussian distribution, as predicted for chaotic Dirac billiards.
3.
4.
采用氧化和析出的方法在氧化硅中凝聚生成锗纳米晶体量子点结构. 其形成的锗晶体团簇没有突出的棱角和支晶结构,锗晶体团簇的轮廓较圆混,故可以用球形量子点模型来模拟实际的锗晶体团簇. 对比了在长时间退火氧化条件下和在短时间退火用激光照射氧化条件下所生成的锗纳米晶体结构的PL光谱和对应的锗纳米晶体团簇的尺寸分布. 短时间退火氧化条件下生成的锗纳米晶体较小(3.28—3.96nm),长时间退火用激光照射氧化条件下所生成的锗纳米晶体较大(3.72—4.98nm);其分布结构显示某些尺寸的锗纳米晶体团簇较稳定,适当的氧化条件可以得到尺寸分布范围较窄的锗纳米晶体团簇. 用量子点受限模型计算了锗纳米晶体团簇的能隙结构,用Monte Carlo方法模拟了PL光谱和对应的锗纳米晶体团簇的尺寸分布,分别与实验结果符合较好.
关键词:
锗晶体团簇
纳米晶体
量子点
激光照射 相似文献
5.
Gang Peng 《Frontiers of Physics》2018,13(4):137802
The quantum confinement effect is important in nanoelectronics and optoelectronics applications; however, there is a discrepancy between the theory of quantum confinement, which indicates that band-gap widening occurs only at small sizes, and experimental observations of band-gap widening in large-diameter nanowires (NWs). This paper reports an obvious blue shift of the absorption edge in the UV-visible absorption spectra of SiC NWs with diameters of 50–300 nm. On the basis of quantum confinement theory and high-resolution transmission electron microscopy images of SiC NWs, band-gap widening in SiC NWs with diameters of up to hundreds of nanometers is fully explained; the results could help to explain similar band-gap widening in other NWs with large diameters. 相似文献
6.
Quantum confinement and surface chemistry of 0.8–1.6 nm hydrosilylated silicon nanocrystals 下载免费PDF全文
In the framework of density functional theory(DFT), we have studied the electronic properties of alkene/alkynehydrosilylated silicon nanocrystals(Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing –NH2and –C4H3S lead to significant hydrosilylationinduced changes in the gap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkenehydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest(0.8 nm) Si NCs hydrosilylated with alkenes containing –NH2and –C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement. 相似文献
7.
The investigation on the oxidation behaviour of Si自聚集锗 纳米结构 激光辅助氧化 PL光谱 low-temperature oxidation, laser-assisted,
nano-structure, PL spectra Project supported by the Natural Science Foundation of Guizhou Province, China (Grant No 3067(2004)). 2005-04-20 2005-04-202005-10-08 The investigation on the oxidation behaviour of Si1-xGex alloys (x=0.05, 0.15, and 0.25) is carried out. It is found for the first time that on the oxide film a germanium nano-cap with a thickness of 1.8-2.8nm and a few Ge nanoparticles with diameters ranging from 5.5 nm to 10 nm are formed by the low-temperatu.re laser-assisted dry oxidation of Si1-xGex substrate. A new scanning method on the decline cross-section of the multiple-layer sample is adopted to measure the layer thickness and the composition. Some new peaks in photoluminescence (PL) spectra are discovered, which could be related to the nano-cap and the nano-particles of germanium. A suitable model and several new calculating formulae with the unrestricted Hartree-Fock-Roothaan (UHFR) method and quantum confinement analysis are proposed to interpret the PL spectra and the nano-structure mechanism in the oxide. 相似文献
8.
Quantum confinement effects and source-to-drain tunneling in ultra-scaled double-gate silicon n-MOSFETs 下载免费PDF全文
By using the linear combination of bulk band (LCBB) method incorporated with the top of the barrier splitting (TBS) model, we present a comprehensive study on the quantum confinement effects and the source-to-drain tunneling in the ultra-scaled double-gate (DG) metal-oxide-semiconductor field-effect transistors (MOSFETs). A critical body thickness value of 5 nm is found, below which severe valley splittings among different X valleys for the occupied charge density and the current contributions occur in ultra-thin silicon body structures. It is also found that the tunneling current could be nearly 100% with an ultra-scaled channel length. Different from the previous simulation results, it is found that the source-to-drain tunneling could be effectively suppressed in the ultra-thin body thickness (2.0 nm and below) by the quantum confinement and the tunneling could be suppressed down to below 5% when the channel length approaches 16 nm regardless of the body thickness. 相似文献
9.
10.
A tight-binding calculation to describe the triblock copolymer xPA(polyacetylene)/nPPP (poly(p-phenylene))/yPA or xPPP/nPA/yPPP is presented. The interfacial coupling between homopolymer segments is attributed to the hopping of π-electrons and the coupling of σ-bonds. The dependence of the band gap of triblock copolymers on the interfacial couplings or on the composite segment lengths is studied. The influence of composite segment lengths on the electron density is also studied. For nPPP/xPA/nPPP structures, the band gap varies with PA segment length over a wide range of 1.32-2.74eV. For nPA/xPPP/nPA structures,the band gap is invariant with PPP segment length. It is found that a spontaneous tunnelling phenomenon could take place in nPA/xPPP/nPA structures. Furthermore, the polaron caused by doping an electron into nPA/xPPP/nPA will tend to be confined in one of the well (PA) parts. This kind of confinement may increase the electron-hole recombination probability. 相似文献
11.
从实验和理论上,研究了量子限制效应对GaAs/AlAs多量子阱中受主对重空穴束缚能的影响。实验中所用的样品是通过分子束外延生长的一系列GaAs/AlAs多量子阱,量子阱宽度为3~20nm,并且在量子阱中央进行了浅受主Be原子的δ-掺杂。在4,20,40,80,120K不同温度下,分别对上述样品进行了光致发光谱测量,观察到了受主束缚激子从基态到激发态的两空穴跃迁,并且从实验上测得了在不同量子阱宽度下受主的束缚能。理论上应用量子力学中的变分原理,数值计算了受主对重空穴束缚能随量子阱宽度的变化关系,比较发现,理论计算和实验结果符合地较好。 相似文献
12.
13.
S. Lebib H. J. von Bardeleben J. Cernogora J. L. Fave J. Roussel 《Journal of luminescence》1998,80(1-4):153-157
Porous Si1−xGex (PSiGe) layers with efficient room temperature visible photoluminescence (PL) were elaborated by anodical etching from p-type doped epitaxial layers with Ge contents from 5 to 30%. The luminescence is characterised by a broad PL band centred at 1.8 eV. Time resolved photoluminescence decay is studied in porous silicon germanium as a function of germanium content, temperature, emission energies and surface passivation. The PL decay line shape is well described by a stretched exponential in all cases. The effective lifetime at low temperature in as prepared porous Si1−xGex is 400 μs, i.e. an order of magnitude less than in porous silicon. After the formation of a 20 Å thick oxide surface layer we observe a decrease of the effective lifetime to 20 μs at T=4 K. 相似文献
14.
G. Palfinger B. Bitnar H. Sigg E. Müller S. Stutz D. Grützmacher 《Physica E: Low-dimensional Systems and Nanostructures》2003,16(3-4):481
In order to obtain a low band gap photocell based on the widely spread silicon technology, e.g. for thermophotovoltaics, SiGe nanostructures can be introduced into a monocrystalline silicon photocell. Beforehand, it is necessary to know the absorption coefficient of the SiGe quantum wells. On a silicon (1 0 0) substrate multiple Si/SiGe quantum well structures were grown by UHV-CVD. The Ge concentration and the well width were used as growth parameters. To obtain significant absorption, the experiment was set up to allow for 200 internal reflections.The total reflection of the light results in a standing electromagnetic wave. The absorption coefficient was obtained from the experimental data taking the geometry and the electric field distribution in the absorbing layer into account. The influence of well width and germanium content on the absorption was investigated with the goal of maximizing the absorption for photons with energies below the band gap energy of silicon. The measurement results are compared with a theoretical model, which takes the band structure of strained SiGe including confinement effects into account. 相似文献
15.
S. A. Beznosyuk 《Russian Physics Journal》1994,37(8):750-756
Euler's equations for quantum rheology and the confinement of electrons in a system of active centers of nanometric scale of a condensed state are obtained using the formalism of kinematic electron-density waves. The conditions for the stability of the electron quantum walls of confinement in the form of the balance between the forces of electric and quantum nature are analyzed.E. A. Buketov Karagandinsk State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 60–67, August, 1994. 相似文献
16.
Umair Manzoor Mohammad Islam Lubna Tabassam Shams Ur Rahman 《Physica E: Low-dimensional Systems and Nanostructures》2009,41(9):1669-1672
Quantum mechanical effects such as an increased bandgap of semiconductors with reduction of size are viewed as having strong potential for future applications. In the present work, zinc oxide (ZnO) nanoparticles (NPs) were synthesized via the co-precipitate method. Very narrow particle size distribution of the ZnO nanoparticles was achieved through careful control of the synthesis conditions. The structural, morphological, and optical characterization was carried out using X-ray diffraction, atomic force microscopy, and UV–vis reflectance techniques, respectively. The results indicated that increasing the temperature from 60 to 65 °C caused a subsequent increase in particle size from 4 to 12 nm. An associated increase in bandgap with decrease in particle size was also noticed which is a strong indication of the quantum confinement effect. 相似文献
17.
Zhang Y. Wang X.Q. Chen W.Y. Bai X.D. Liu C.X. Yang S.R. Liu S.Y. 《Optical and Quantum Electronics》2001,33(11):1131-1137
In this paper, room temperature PL spectra of InAs self-assembled dots grown on GaAs/InP and InP substrate are presented. For analyzing different positions of the PL peaks, we examine the strain tensor in these quantum dots (QDs) using a valence force field model, and use a five-band k·p formalism to find the electronic spectra. We find that the GaAs tensile-stained layer affects the position of room temperature PL peak. The redshift of PL peak of InAs/GaAs/InP QDs compared to that of InAs/InP QDs is explained theoretically. 相似文献
18.
Marin Kosovi Ozren Gamulin Maja Balarin Mile Ivanda Vedran erek Davor Risti Marijan Marciu Mira Risti 《Journal of Raman spectroscopy : JRS》2014,45(6):470-475
Light emitting porous silicon samples with different porosities, i.e. crystalline sizes, were produced from the low level doped p‐type silicon wafers by the anodization process. The effects of strong phonon confinement, redshift and broadening, were found on the O(Γ) phonon mode of the Raman spectra recorded at non‐resonant excitation condition using a near infrared 1064 nm laser excitation wavelength. Similarly, the blueshift of the photoluminescence peak was observed by reducing the crystalline sizes. Vibrational and optical findings were analysed within the existing models of confinement on the vibrational and electronic states of silicon nanocrystals. Since the energy of the photoluminescence peak of small nanocrystals also depends on the oxygen content on the surface of nanocrystals, the surface oxidation states were examined using infrared and energy dispersive spectroscopy. The partial coverage of the surface of nanocrystals was found due to the sample exposure to air. As a consequence, the photoluminescence energy did not increase as would be expected from the quantum confinement model. These results further indicate that the oxygen passivation along with the quantum confinement determines the electronic states of the silicon nanocrystals in porous silicon. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
在有效质量近似(EMA)下,采用B样条技术和变分方法,分别研究较大CdTe球量子点(25—35nm)和较小CdS球量子点(025—35nm)中激子的量子受限效应,计算出CdTe和CdS球量子点中受限激子的基态能和束缚能随参数的变化规律,比较两种计算结果得到:(1)较大量子点中受限激子的基态能和束缚能对量子点边界和量子点外部介质的介电常数不敏感,但较小量子点中受限激子的基态能和束缚能对量子点边界和量子点外部介质的介电常数比较敏感.(2)在较强受限区域,大量子点与小量子点的激子基态能和束缚能的变化规律完全不同.(3)B样条技术对于研究这种具有边界的束缚态系统是很精确的方法,这种方法特别适合用于多层结构量子点系统的精确计算.
关键词:
B样条技术
量子受限效应
有效质量近似 相似文献
20.
We study a model of quark confinement defined by the vanishing of colour currents. The model is shown to be equivalent to
quantum chromodynamics and this equivalence is interpreted as due to the compositeness of the colour gluons. The Green’s functions
of the theory are found to contain nontrivial structure only for colour singlet composites which can be identified with hadrons. 相似文献