首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
We present an internal pumping strategy to enhance solute fluxes in polymer gels. The method is based on electroosmotic flow driven by an electric field applied across a gel that has been doped with charged colloidal inclusions. This work is motivated by the need to enhance the transport in gel-based biosensor devices whose response dynamics are often mass transfer limited. In this case, polyacrylamide gel slabs were doped with immobilized, charged silica colloids, and the flux of a fluorescent tracer was measured as a function of applied field strength, the volume fraction and size of the colloidal silica inclusions, and the bulk electrolyte composition. Significant flux enhancements were achieved with applied electric currents on the order of a few mA. Control experiments indicated that the flux enhancement was not due to any distortion of the gel diffusional properties in response to the presence of the inclusions. At a constant inclusion volume fraction, the electroosmotic solute flux enhancement was strongest for the smallest particle sizes that provide the highest total surface area, consistent with the electroosmotic mechanism whereby fluid flow is generated along the solid/liquid interface.  相似文献   

2.
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.  相似文献   

3.
Electric-field-enhanced transport in polyacrylamide hydrogel nanocomposites   总被引:1,自引:0,他引:1  
Electroosmotic pumping through uncharged hydrogels can be achieved by embedding the polymer network with charged colloidal inclusions. Matos et al. [M.A. Matos, L.R. White, R.D. Tilton, J. Colloid Interface Sci. 300 (2006) 429-436], recently used the concept to enhance the diffusion-limited flux of uncharged molecules across polyacrylamide hydrogel membranes for the purpose of improving the performance of biosensors. This paper seeks to link their reported macroscale diagnostics to physicochemical characteristics of the composite microstructure. The experiments are characterized by a Debye screening length that is much larger than the radius of the silica nanoinclusions and the Brinkman screening length of the polymer skeleton. Accordingly, closed-form expressions for the incremental pore mobility are derived, and these are evaluated by comparison with numerically exact solutions of the full electrokinetic model. A mathematical model for the bulk electroosmotically enhanced tracer flux is proposed, which is combined with the electrokinetic model to ascertain the electroosmotic pumping velocity from measured flux enhancements. Because the experiments are performed with a known current density, but unknown bulk conductivity and electric field strength, theoretical estimates of the bulk electrical conductivity are adopted. These account for nanoparticle polarization, added counterions, and non-specific adsorption. Theoretical predictions of the flux enhancement, achieved without any fitting parameters, are within a factor of two of the experiments. Alternatively, if the Brinkman screening length of the polymer skeleton is treated as a fitting parameter, then the best-fit values are bounded by the range 0.9-1.6 nm, depending on the inclusion size and volume fraction. Independent pressure-driven flow experiments reported in the literature for polyacrylamide gels without inclusions suggest 0.4 or 0.8 nm. The comparison can be improved by allowing for hindered ion migration, while uncertainties regarding the inclusion surface charge are demonstrated to have a negligible influence on the electroosmotic flow. Finally, and perhaps most importantly, anomalous variations in the flux enhancement with particle size and volume fraction can be rationalized at present only by acknowledging that particle-particle and particle-polymer interactions increase the effective permeability of the hydrogel skeleton. This bears similarities to the increase in polymer free volume that accompanies the addition of silica nanoparticles to certain polymeric membranes.  相似文献   

4.
This paper examines the response of electrolyte-saturated polymer gels, embedded with charged spherical inclusions, to a weak gradient of electrolyte concentration. An electrokinetic model was presented in an earlier publication, and the response of homogeneous composites to a weak electric field was calculated. In this work, the influence of the inclusions on bulk ion fluxes and the strength of an electric field (or membrane diffusion potential) induced by the bulk electrolyte concentration gradient are computed. Effective ion diffusion coefficients are significantly altered by the inclusions, so-depending on the inclusion surface charge or zeta potential-asymmetric electrolytes can behave as symmetrical electrolytes and vice versa. The theory also quantifies the strength of flow driven by concentration-gradient-induced perturbations to the equilibrium diffuse double layers. Similarly to diffusiophoresis, the flow may be either up or down the applied concentration gradient.  相似文献   

5.
Electrokinetic transport of fluorescent tracer molecules in a bed of porous glass beads was investigated by confocal laser scanning microscopy. Refractive index matching between beads and the saturating fluid enabled a quantitative analysis of intraparticle and extraparticle fluid-side concentration profiles. Kinetic data were acquired for the uptake and release of electroneutral and counterionic tracer under devised conditions with respect to constant pressure-driven flow through the device and the effect of superimposed electrical fields. Transport of neutral tracer is controlled by intraparticle mass transfer resistance which can be strongly reduced by electroosmotic flow, while steady-state distributions and bead-averaged concentrations are unaffected by the externally applied fields. Electrolytes of low ionic strength caused the transport through the charged (mesoporous) beads to become highly ion-permselective, and concentration polarization is induced in the bulk solution due to the superimposed fields. The depleted concentration polarization zone comprises extraparticle fluid-side mass transfer resistance. Ionic concentrations in this diffusion boundary layer decrease at increasing field strength, and the flux densities approach an upper limit. Meanwhile, intraparticle transport of counterions by electromigration and electroosmosis continues to increase and finally exceeds the transport from bulk solution into the beads. A nonequilibrium electrical double layer is induced which consists of mobile and immobile space charge regions in the extraparticle bulk solution and inside a bead, respectively. These electrical field-induced space charges form the basis for nonequilibrium electrokinetic phenomena. Caused by the underlying transport discrimination (intraparticle electrokinetic vs extraparticle boundary-layer mass transfer), the dynamic adsorption capacity for counterions can be drastically reduced. Further, the extraparticle mobile space charge region leads to nonlinear electroosmosis. Flow patterns can become highly chaotic, and electrokinetic instability mixing is shown to increase lateral dispersion. Under these conditions, the overall axial dispersion of counterionic tracer can be reduced by more than 2 orders of magnitude, as demonstrated by pulse injections.  相似文献   

6.
在2.2mm内径的石英管中,采用正硅酸四乙酯水解的溶胶-凝胶法合成了填充细石英砂的高比表面积电色谱整体柱,并用正辛基三乙氧基硅烷键合制备反相色谱固定相.填充细石英砂的电色谱整体柱抑制了大柱径引起的电流热效应,采用电渗流驱动流动相,分离了苯酚和苯,实验证明该整体微柱用于电色谱分离和改善浓度检出限的可行性.  相似文献   

7.
This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.  相似文献   

8.
Summary Electrochromatography (that is HPLC where the eluent is driven along the column by electro-osmosis using fields of up to 100 kV m−1) promises plate efficiencies for HPLC which are comparable to those attained in capillary gas chromatography, but this requires that narrow-bore columns can be successfully packed with submicron particles. This paper demonstrates that we have now moved a considerable distance towards this goal. We show (1) that, following theory, there is no evidence of any reduction in electroosmotic velocity in columns packed with particles down to 1.5 μm diameter, (2) that reduced plate heights as low as unity are attainable for unretained solutes using both slurrypacked and drawn-packed columns 30 to 200 μm bore and up to 1 m long when packed with conventional 3 and 5 μm silica gels or with 1.5 μm impermeable silica spheres, (3) that columns driven electrically show higher plate efficiencies than identical columns driven by pressure, and (4) that 100,000 plate HPLC separations can be achieved in relatively short times of 30 minutes using in situ derivatised drawn packed capillaries containing 3 and 5 μm ODS-silica gels.  相似文献   

9.
Electroosmotic properties of agarose gels with low, medium, high and super high electroendosmosis (EEO) were evaluated based on the apparent electric field mediated mobility of a neutral, fluorescent marker under constant field strength using ultrathin-layer separation configuration. Electroosmotic flow mobility values were measured in different gel concentrations and also in the absence and the presence of various linear polymer additives. Under ultrathin-layer separation conditions, a slight decrease in electroosmotic flow mobility was observed with increasing agarose gel concentration of 1 to 3% for all agarose gels investigated. When linear polymer additives, such as linear polyacrylamide, hydroxyethyl cellulose or polyethylene oxide were added to 1% low electroendosmosis agarose gel, significant reduction of the electroosmotic flow properties were observed with increasing additive concentration. Effect of the intrinsic electroosmotic properties of the various electroendosmosis agaroses on the apparent mobilities and separation performance of double-stranded DNA fragments during automated ultrathin-layer agarose gel electrophoresis was also investigated.  相似文献   

10.
Chien RL  Bousse L 《Electrophoresis》2002,23(12):1862-1869
A general equation to calculate the node pressure at a junction in a microfluidic network is presented. The node pressure is generated from both the hydrodynamic flow due to the external applied hydraulic pressures and the electrokinetic flow resulted from the applied electric field. Pure electroosmotic flow has a plug-flow profile and pressure flow has a parabolic flow profile. In a first order approximation, these two flows can be treated separately, and the total flow is the sum of the two. An externally applied pressure simply creates a constant offset in the node pressure as long as the flow resistances remain the same. In a nonhomogeneous microfluidic network, where the electrical resistivity or the electroosmotic mobility is not constant everywhere, the differences in electroosmotic flow in various sections of the network will create an electroosmotically induced pressure at the internal nodes. Our theoretical approach can easily be extended to networks with more than one internal node. One prediction of this theory is that any variation in electroosmotic mobility or solution resistivity in different network branches will generate a pressure, and can thus be used as a pump. As an example, we demonstrate electroosmotic pumping in a high-low buffer system.  相似文献   

11.
《Electrophoresis》2017,38(7):1022-1037
In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.  相似文献   

12.
In this work, a novel molecularly imprinted polymer (MIP) monolithic column with integrated in‐column electroosmotic pump (EOP) was designed and successfully prepared to facilitate the capillary chromatography with MIP column. A silica‐based EOP was synthesized at the detection end of the MIP monolithic capillary column by so‐gel to provide the hydrodynamic driven force for the capillary chromatography. Because of large surface area and low fluidic resistance of the silica monolith,a strong and steady EOF was generated by silica‐based EOP, indicating that the EOP was quite compatible with MIP capillary column. With the sufficient EOF provided by EOP, the electro‐driven based capillary chromatographic separation of nitrophenol isomers was achieved in 4‐vinylpyridine‐based MIP monolithic capillary, which was originally proved infeasible because of the EOF shortage. No significant influence upon the specific recognition of the MIP was found due to the setting of EOP after the detection window of the column. The influence of experimental parameters on the EOF such as voltage and pH value of running buffer was investigated. The column was also evaluated by capillary liquid chromatographic mode to compare with EOP‐driven capillary chromatography. Higher column efficiency was obtained by EOP‐driven separation with improved peak shape. The results suggested that EOP‐supported technique would be a good way to solve the problem of weak EOF generation in electro‐driven capillary chromatography.  相似文献   

13.
A high-resolution calorimetric spectroscopy study has been performed on pure glycerol and colloidal dispersions of an aerosil gel in glycerol covering a wide range of temperatures from 300 to 380 K, deep in the liquid phase of glycerol. The colloidal glycerol+aerosil samples with 0.07, 0.14, and 0.32 g of silica per cm3 of glycerol reveal activated energy (thermal) dynamics at temperatures well above the Tg of the pure glycerol. The onset of these dynamics appears to be due to the frustration or pinning imposed by the silica gel on the glycerol liquid and is apparently a long-range, cooperative phenomena. Since this behavior begins to manifest itself at relatively low silica densities (large mean void length compared to the size of a glycerol molecule) and speeds up with increasing density, these induced dynamics are likely due to a coupling between the flexible aerosil gel and large groups of glycerol molecules mediated by mutual hydrogen bonding. This is supported by the lack of such thermal dynamics in pure aerosil gels, pure glycerol, or aerosil gels dispersed in a non-glass-forming, non-hydrogen-bonding, liquid crystal under nearly identical experimental conditions. The study of such frustrated colloids may provide a unique avenue for illuminating the physics of glasses.  相似文献   

14.
T. -L. Huang 《Chromatographia》1993,35(7-8):395-398
Summary A porous gel model of silica-solution interface was proposed to explain the pH hysteresis effect on the electroosmotic mobility with capillary zone electrophoresis in silica capillaries. It is speculated that, under acidic preconditionings of the capillaries, a porous gel layer is formed at the silica-solution interface, and the magnitudes of potential and electroosmotic mobility are then reduced due to the penetration of electrolyte counterions to the gel layer. On the other hand, under basic preconditionings, a fresh silica surfaces is created by dissolution of silica in alkaline conditions, and this would result in higher values of potential and electroosmotic mobility. The Guoy-Chapman-Stern-Grahame model was employed to simulate the pH-dependence of electroosmotic mobility for the silica capillaries with a gelling surface and with a fresh surface. The predicted data were compared with the experimental results and shown to support the explanation.  相似文献   

15.
An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.  相似文献   

16.
While exhibiting a well-defined nanometer-level structure, surfactant-templated nanoscopic silicas produced via self-assembly do not always possess long-range order. We demonstrate that long-range order can be controlled by guiding the self-assembly of nanostructured silica-surfactant hybrids with low-strength electric fields (E approximately 200 V/m) to produce nanoscopic silica with both the micrometer- and nanometer-level structures oriented parallel to the applied field. Under the influence of the electric field, nanoscopic silica particles migrate, elongate, and merge into fibers with a rate of migration proportional to the applied field strength. The linear dependence with the field strength indicates that the process is governed by electroosmotic flow but not by polarization effects. Realignment of the short-range ordered surfactant nanochannels along the fiber axis accompanies the migration.  相似文献   

17.
Net fluid flow of electrolytic solutions induced by a traveling-wave potential applied to an array of co-planar interdigitated microelectrodes has been reported. At low applied voltages the flow is driven in the direction of the traveling-wave potential, as expected by linear and weakly nonlinear theoretical studies. The flow is driven at the surfaces of the electrodes by electrical forces acting in the diffuse electrical double layer. The pumping mechanism has been analyzed theoretically under the assumption of perfectly polarizable electrodes. Here we extend these studies to include the effect of Faradaic currents on the electroosmotic slip velocity generated at the electrode/electrolyte interface. We integrate the electrokinetic equations under the thin-double-layer and low-potential approximations. Finally, we analyze the pumping of electrolyte induced by a traveling-wave signal applied to a microelectrode array using this linear model.  相似文献   

18.
 In this paper we summarise the effects induced by electric and magnetic fields on the mobility and shape of polymer gels containing a complex fluid as a swelling agent. Magnetic-field-sensitive gel beads and monolith gels have been prepared by introducing magnetic particles of colloidal size into chemically cross-linked poly(N-isopropylacrylamide) and poly(vinyl alcohol) hydrogels. The influence of uniform and nonuniform fields has been studied. In uniform magnetic fields the gel beads form straight chainlike structures, whereas in nonhomogeneous fields the beads aggregates due to the magnetophoretic force directed to the highest field intensity. The ability of magnetic-field-sensitive gels to undergo quick, controllable changes in shape can be used to mimic muscular contraction. Received: 26 July 1999/Accepted: 27 August 1999  相似文献   

19.
Tallarek U  Paces M  Rapp E 《Electrophoresis》2003,24(24):4241-4253
The relevance and magnitude of an electroosmotic perfusion mechanism in electrochromatography is analyzed. To systemize our studies we first considered the transport of an electroneutral and nonadsorbing tracer. Based on the refractive index matching in a microfluidic setup containing fixed spherical porous particles, we conducted a quantitative analysis in real time of the spatio-temporal distribution of fluorescent tracer molecules during their uptake by (and a release from) single particles using confocal laser scanning microscopy. Even under conditions of a significant electrical double layer overlap the intraparticle electroosmotic flow produces due to its unidirectional nature and in striking contrast to the symmetric (spherical) distributions typical for purely diffusive transport strongly asymmetric concentration profiles inside spherical particles as the locally charged pore liquid begins to respond to the externally applied electrical field. The profiles retain an axisymmetric nature, i.e., rotational symmetry with respect to the field direction. Results of our measurements could be successfully interpreted and further analyzed by a compact mathematical model. Intraparticle Peclet numbers of up to 150 have been realized and found to significantly enhance the mass transport on particle scale towards the convection-dominated regime when compared to a conventional (diffusion-limited) kinetics.  相似文献   

20.
We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号