首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-(2'-Deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one (M1dG) is the major reaction product of deoxyguanosine with malondialdehyde or base propenals. M1dG undergoes hydrolytic ring-opening to N2-oxopropenyl-deoxyguanosine (N2OPdG) under basic conditions. We report that ring-opening of M1dG as a nucleoside or in oligonucleotides is a reversible second-order reaction with hydroxide ion. NMR and UV analysis revealed N2OPdG(-) to be the only product of M1dG ring-opening in basic solution. The rate constant for reaction of M1dG with hydroxide is 3.8 M(-1) s(-1), and the equilibrium constant is calculated to be 2.1 +/- 0.3 x 10(4) M(-1) at 25 degrees C. Equilibrium constants determined by spectroscopic analysis of the reaction end-point or by thermodynamic analysis of rate constants determined over a range of temperatures yielded a value 2.5 +/- 0.2 x 10(4) M(-1). Kinetic analysis of ring-opening of M1dG in oligonucleotides indicated the rate constant for ring-opening is decreased 10-fold compared to that in the nucleoside. Flanking purines or pyrimidines did not significantly alter the rate constants for ring-opening, but purines flanking M1dG enhanced the rate constant for the reverse reaction. A mechanism is proposed for ring-opening of M1dG under basic conditions and a role is proposed for duplex DNA in accelerating the rate of ring-opening of M1dG at neutral pH.  相似文献   

2.
Treatment of DNA with nitrous acid results in the formation of DNA-DNA cross-links. Two cross-link lesions have previously been isolated and their structures assigned based on spectroscopic data. The major lesion has been proposed to consist of two deoxyguanosine (dG) nucleosides sharing a common N2 atom (1), while the structure of the minor lesion has been proposed to consist of a common nitrogen atom linking C2 of a dG nucleoside to C6 of deoxyadenosine (2). The chemical synthesis of 1 and 2, utilizing a palladium-catalyzed coupling, is described herein. It is demonstrated that the spectroscopic properties of synthetic 1 are identical to that of lesion 1 obtained from nitrous acid cross-linked DNA, thus providing a proof of its structure. Comparison of the limited spectroscopic data available for lesion 2 originating from nitrous acid cross-linked DNA to synthetic 2 supports its structural assignment. The synthetic approach used for synthesis of 1 and 2 is shown to be a general method for the preparation of a variety of N2-substituted dG nucleosides in good yields.  相似文献   

3.
Guanine radicals are important reactive intermediates in DNA damage. Hydroxyl radical (HO.) has long been believed to react with 2′‐deoxyguanosine (dG) generating 2′‐deoxyguanosin‐N1‐yl radical (dG(N1‐H).) via addition to the nucleobase π‐system and subsequent dehydration. This basic tenet was challenged by an alternative mechanism, in which the major reaction of HO. with dG was proposed to involve hydrogen atom abstraction from the N2‐amine. The 2′‐deoxyguanosin‐N2‐yl radical (dG(N2‐H).) formed was proposed to rapidly tautomerize to dG(N1‐H).. We report the first independent generation of dG(N2‐H). in high yield via photolysis of 1 . dG(N2‐H). is directly observed upon nanosecond laser flash photolysis (LFP) of 1 . The absorption spectrum of dG(N2‐H). is corroborated by DFT studies, and anti‐ and syn‐dG(N2‐H). are resolved for the first time. The LFP experiments showed no evidence for tautomerization of dG(N2‐H). to dG(N1‐H). within hundreds of microseconds. This observation suggests that the generation of dG(N1‐H). via dG(N2‐H). following hydrogen atom abstraction from dG is unlikely to be a major pathway when HO. reacts with dG.  相似文献   

4.
trans-4-Hydroxynonenal (HNE) is a peroxidation product of omega-6 polyunsaturated fatty acids. The Michael addition of deoxyguanosine to HNE yields four diastereomeric exocyclic 1,N(2)-dG adducts. The corresponding acrolein- and crotonaldehyde-derived exocyclic 1,N(2)-dG adducts undergo ring-opening to N(2)-dG aldehydes, placing the aldehyde functionalities into the minor groove of DNA. The acrolein- and the 6R-crotonaldehyde-derived exocyclic 1,N(2)-dG adducts form interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Only the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry forms interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Moreover, as compared to the exocyclic 1,N(2)-dG adducts of acrolein and crotonaldehyde, the cross-linking reaction is slow (Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc. 2003, 125, 5687-5700). Accordingly, the chemistry of the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry has been compared with that of the (6R,8S,11R) adduct, when incorporated into 5'-d(GCTAGCXAGTCC)-3'.5'-d(GGACTCGCTAGC)-3', containing the 5'-CpG-3' sequence (X = HNE-dG). When placed complementary to dC in this duplex, both adducts open to the corresponding N(2)-dG aldehydic rearrangement products, suggesting that the formation of the interstrand cross-link by the exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry, and the lack of cross-link formation by the exocyclic 1,N(2)-dG adduct of (6R,8S,11R) stereochemistry, is not attributable to inability to undergo ring-opening to the aldehydes in duplex DNA. Instead, these aldehydic rearrangement products exist in equilibrium with stereoisomeric cyclic hemiacetals. The latter are the predominant species present at equilibrium. The trans configuration of the HNE H6 and H8 protons is preferred. The presence of these cyclic hemiacetals in duplex DNA is significant as they mask the aldehyde species necessary for interstrand cross-link formation.  相似文献   

5.
Fapy.dG (N(6)()-(2-deoxy-alpha,beta-d-erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine) is a modified purine lesion produced by a variety of DNA-damaging agents, which shows interesting biochemical properties. The previous method for synthesizing oligonucleotides containing Fapy.dG utilized a reverse dinucleotide phosphoramidite, which also required the synthesis of the appropriate reverse phosphoramidites. An improved method for synthesizing oligonucleotides containing Fapy.dG, which does not require reverse phosphoramidites, is described. Fapy.dG containing dinucleotide phosphoramidites containing 5'-thymidine (11a) or 5'-deoxycytidine (15) are prepared and employed in oligonucleotide synthesis. Oligonucleotide purity is assayed using the DNA repair enzyme formamidopyrimidine DNA glycosylase and by ESI-MS.  相似文献   

6.
To elucidate electron attachment induced damage in the DNA double helix, electron attachment to the 2'-deoxyribonucleoside pair dG:dC has been studied with the reliably calibrated B3LYP/DZP++ theoretical approach. The exploration of the potential energy surface of the neutral and anionic dG:dC pairs predicts a positive electron affinity for dG:dC [0.83 eV for adiabatic electron affinity (EAad) and 0.16 eV for vertical electron affinity (VEA)]. The substantial increases in the electron affinity of dG:dC (by 0.50 eV for EAad and 0.23 eV for VEA) compared to those of the dC nucleoside suggest that electron attachment to DNA double helices should be energetically favored with respect to the single strands. Most importantly, electron attachment to the dC moiety in the dG:dC pair is found to be able to trigger the proton transfer in the dG:dC- pair, surprisingly resulting in the lower energy distonic anionic complex d(G-H)-:d(C+H).. The negative charge for the latter system is located on the base of dC in the dG:dC- pair, while it is transferred to d(G-H) in d(G-H)-:d(C+H)., accompanied by the proton transfer from N1(dG) to N3(dC). The low energy barrier (2.4 kcal/mol) for proton transfer from dG to dC- suggests that the distonic d(G-H)-:d(C+H). pair should be one of the important intermediates in the process of electron attachment to DNA double helices. The formation of the neutral nucleoside radical d(C+H). is predicted to be the direct result of electron attachment to the DNA double helices. Since the neutral radical d(C+H). nucleotide is the key element in the formation of this DNA lesion, electron attachment might be one of the important factors that trigger the formation of abasic sites in DNA double helices.  相似文献   

7.
Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N(2)-dG adducts in DNA. When placed opposite dC in the 5'-CpG-3' sequence, the (6S,8R,11S) diastereomer forms a N(2)-dG:N(2)-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687-5700]. We refined its structure in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3'·5'-d(G(13)G(14)A(15)C(16)T(17)C(18)Y(19)C(20)T(21)A(22)G(23)C(24))-3' [X(7) is the dG adjacent to the C6 carbon of the cross-link or the α-carbon of the (6S,8R,11S) 1,N(2)-dG adduct, and Y(19) is the dG adjacent to the C8 carbon of the cross-link or the γ-carbon of the HNE-derived (6S,8R,11S) 1,N(2)-dG adduct; the cross-link is in the 5'-CpG-3' sequence]. Introduction of (13)C at the C8 carbon of the cross-link revealed one (13)C8→H8 correlation, indicating that the cross-link existed predominantly as a carbinolamine linkage. The H8 proton exhibited NOEs to Y(19) H1', C(20) H1', and C(20) H4', orienting it toward the complementary strand, consistent with the (6S,8R,11S) configuration. An NOE was also observed between the HNE H11 proton and Y(19) H1', orienting the former toward the complementary strand. Imine and pyrimidopurinone linkages were excluded by observation of the Y(19)N(2)H and X(7) N1H protons, respectively. A strong H8→H11 NOE and no (3)J((13)C→H) coupling for the (13)C8-O-C11-H11 eliminated the tetrahydrofuran species derived from the (6S,8R,11S) 1,N(2)-dG adduct. The (6S,8R,11S) carbinolamine linkage and the HNE side chain were located in the minor groove. The X(7)N(2) and Y(19)N(2) atoms were in the gauche conformation with respect to the linkage, maintaining Watson-Crick hydrogen bonds at the cross-linked base pairs. A solvated molecular dynamics simulation indicated that the anti conformation of the hydroxyl group with respect to C6 of the tether minimized steric interaction and predicted hydrogen bonds involving O8H with C(20)O(2) of the 5'-neighbor base pair G(5)·C(20) and O11H with C(18)O(2) of X(7)·C(18). These may, in part, explain the stability of this cross-link and the stereochemical preference for the (6S,8R,11S) configuration.  相似文献   

8.
The base-pairing properties of N7-(2-deoxy-β-D -erythro-pentofuranosyl)guanine (N7Gd; 1 ) are investigated. The nucleoside 1 was obtained by nucleobase-anion glycosylation. The glycosylation reaction of various 6-alkoxy-purin-2-amines 3a - i with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 8 ) was studied. The N9/N7-glycosylation ratio was found to be 1:1 when 6-isopropoxypurin-2-amine ( 3d ) was used, whereas 6-(2-methoxyethoxy)purin-2-arnine ( 3i ) gave mainly the N9-nucleoside (2:1). Oligonucleotides containing compound 1 were prepared by solid-phase synthesis and hybridized with complementary strands having the four conventional nucleosides located opposite to N7Gd. According to Tm values and enthalpy data of duplex formation, a base pair between N7Gd and dG is suggested. From the possible N7Gd dG base pair motives, Hoogsteen pairing can be excluded as 7-deaza-2′-deoxyguanosine forms the same stable base pair with N7Gd as dG.  相似文献   

9.
A methodology to synthesize oligonucleotides containing an alkyl interstrand cross-link between the two O6 atoms of deoxyguanosine has been developed. This cross-link is designed to serve as a stable structural mimic of the lesion formed in duplex DNA with the bifunctional alkylating agent hepsulfam. The O6-alkyl coupling is performed via a Mitsunobu reaction between a nucleoside and mono-protected 1,7-heptanediol. Solid-phase oligonucleotide synthesis using a nucleoside bis-phosphoramidite allows for the assembly of the cross-linked duplex. Sufficient quantities of this cross-linked duplex were obtained for various structural and biological investigations.  相似文献   

10.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   

11.
N6-(2-Deoxy-α,β-d -erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy⋅dG) is a major DNA lesion produced from 2′-deoxyguanosine under oxidizing conditions. Fapy ⋅ dG is produced from a common intermediate that leads to 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-OxodGuo), and in greater quantities in cells. The impact of Fapy ⋅ dG on DNA structure and function is much less well understood than that of 8-OxodGuo. This is largely due to the significantly greater difficulty in synthesizing oligonucleotides containing Fapy ⋅ dG than 8-OxodGuo. We describe a synthetic approach for preparing oligonucleotides containing Fapy ⋅ dG that will facilitate intensive studies of this lesion in DNA. A variety of oligonucleotides as long as 30 nucleotides are synthesized. We anticipate that the chemistry described herein will provide an impetus for a wide range of studies involving Fapy ⋅ dG.  相似文献   

12.
trans-4-Hydroxynonenal (HNE) is a major peroxidation product of omega-6 polyunsaturated fatty acids. The reaction of HNE with DNA gives four diastereomeric 1,N(2)-gamma-hydroxypropano adducts of deoxyguanosine; background levels of these adducts have been detected in animal tissue. Stereospecific syntheses of these four adducts at the nucleoside level have been accomplished. In addition, a versatile strategy for their site-specific incorporation into oligonucleotides has been developed. These adducts are destabilizing as measured by melting temperature when compared to an unadducted strand. The thermal destablization of the adducted 12-mers ranged from 5 to 16 degrees C and is dependent on the absolute stereochemistry of the adduct. The HNE adducts were also examined for their ability to form interstrand DNA-DNA cross-links when incorporated into a CpG sequence. We find that only one of the HNE stereoisomers formed interstrand DNA-DNA cross-links.  相似文献   

13.
The influence of the presence of DNA on the kinetics of cisplatin (cis-[PtCl2(NH3)2]) aquation (replacement of Cl- by H2O) and anation (replacement of H2O by Cl-) involved in the hydrolysis of cisplatin have been determined by two-dimensional [1H,15N] HMQC NMR spectroscopy. Single-stranded dT20 and double-stranded [d(AT)10]2 oligonucleotides were used as DNA models, avoiding guanines which are known to react rapidly with aquated cisplatin forms. Reactions starting from cis-[PtCl2(15NH3)2], or from a stoichiometric mixture of cis-[Pt(15NH3)2(H2O)2]2+ and Cl- (all 0.5 mM Pt(II); in ionic strength, adjusted to 0.095 M or 0.011 M with NaClO4, pH between 3.0 and 4.0) were followed in an NMR tube in both the absence and presence of 0.7 mM dT20 or [d(AT)10]2. In the presence of dT20, we observed a slight and ionic-strength-independent decrease (15-20 %) of the first aquation rate constant, and a more significant decrease of the second anation rate constant. The latter was more important at low ionic strength, and can be explained by efficient condensation of cis-[Pt(15NH3)2(H2O)2]2+ on the surface of single-stranded DNA, in a region depleted of chloride anions. At low ionic strength, we observed an additional set of [1H,15N] HMQC spectral signals indicative of an asymmetric species of PtN2O2 coordination, and we assigned them to phosphate-bound monoadducts of cis-[Pt(15NH3)2(H2O)2]2+. Double-stranded [d(AT)10]2 slowed down the first aquation step also by approximately 15 %; however, we could not determine the influence on the second hydrolysis step because of a significant background reaction with cis-[Pt(NH3)2(H2O)2]2+.  相似文献   

14.
The predominant product of aberrant DNA methylation is the genotoxic lesion N7-methyl-2'-deoxyguanosine (m7dG). M7dG is recognized and excised by lesion-specific DNA glycosylases, namely AlkA in E. coli and Aag in humans. Structural studies of m7dG recognition and catalysis by these enzymes have been hampered due to a lack of efficient means by which to incorporate the chemically labile m7dG moiety site-specifically into DNA on a preparative scale. Here we report a solution to this problem. We stabilized the lesion toward acid-catalyzed and glycosylase-catalyzed depurination by 2'-fluorination and toward base-catalyzed degradation using mild, nonaqueous conditions in the DNA deprotection reaction. Duplex DNA containing 2'-fluoro-m7dG (Fm7dG) cocrystallized with AlkA as a host-guest complex in which the lesion-containing segment of DNA was nearly devoid of protein contacts, thus enabling the first direct visualization of the N7-methylguanine lesion nucleobase in DNA. The structure reveals that the base-pairing mode of Fm7dG:C is nearly identical to that of G:C, and Fm7dG does not induce any apparent structural disturbance of the duplex structure. These observations suggest that AlkA and Aag must perform a structurally invasive interrogation of DNA in order to detect the presence of intrahelical m7dG lesions.  相似文献   

15.
Oligodeoxynucleotides containing the double-headed nucleoside 5'(S)-C-(2-(thymin-1-yl)ethyl)thymidine were prepared by standard solid phase synthesis. The synthetic building block for incorporating the double-headed moiety was prepared from thymidine, which was stereoselectively converted to a protected 5'(S)-C-hydroxyethyl derivative and used to alkylate the additional thymine by a Mitsunobu reaction. The oligodeoxynucleotides were studied in different nucleic acid secondary structures: duplexes, bulged duplexes, three-way junctions and artificial DNA zipper motifs. The thermal stability of these complexes was studied, demonstrating an almost uniform thermal penalty of incorporating one double-headed nucleoside moiety into a duplex or a bulged duplex, comparable to the effects of the previously reported double-headed nucleoside 5'(S)-C-(thymin-1-yl)methylthymidine. The additional base showed only very small effects when incorporated into DNA or RNA three-way junctions. The various DNA zipper arrangements indicated that extending the linker from methylene to ethylene almost completely removed the selective minor groove base-base stacking interactions observed for the methylene linker in a (-3)-zipper, whereas interactions, although somewhat smaller, were observed for the ethylene linker in a (-4)-zipper motif.  相似文献   

16.
We report the design and synthesis of 2'-fluoro cyclohexenyl nucleic acid (F-CeNA) pyrimidine phosphoramidites and the synthesis and biophysical, structural, and biological evaluation of modified oligonucleotides. The synthesis of the nucleoside phosphoramidites was accomplished in multigram quantities starting from commercially available methyl-D-mannose pyranoside. Installation of the fluorine atom was accomplished using nonafluorobutanesulfonyl fluoride, and the cyclohexenyl ring system was assembled by means of a palladium-catalyzed Ferrier rearrangement. Installation of the nucleobase was carried out under Mitsunobu conditions followed by standard protecting group manipulations to provide the desired pyrimidine phosphoramidites. Biophysical evaluation indicated that F-CeNA shows behavior similar to that of a 2'-modified nucleotide, and duplexes with RNA showed slightly lower duplex thermostability as compared to that of the more rigid 3'-fluoro hexitol nucleic acid (FHNA). However, F-CeNA modified oligonucleotides were significantly more stable against digestion by snake venom phosphodiesterases (SVPD) as compared to unmodified DNA, 2'-fluoro RNA (FRNA), 2'-methoxyethyl RNA (MOE), and FHNA modified oligonucleotides. Examination of crystal structures of a modified DNA heptamer duplex d(GCG)-T*-d(GCG):d(CGCACGC) by X-ray crystallography indicated that the cyclohexenyl ring system exhibits both the (3)H(2) and (2)H(3) conformations, similar to the C3'-endo/C2'-endo conformation equilibrium seen in natural furanose nucleosides. In the (2)H(3) conformation, the equatorial fluorine engages in a relatively close contact with C8 (2.94 ?) of the 3'-adjacent dG nucleotide that may represent a pseudo hydrogen bond. In contrast, the cyclohexenyl ring of F-CeNA was found to exist exclusively in the (3)H(2) (C3'-endo like) conformation in the crystal structure of the modified A-form DNA decamer duplex [d(GCGTA)-T*-d(ACGC)](2.) In an animal experiment, a 16-mer F-CeNA gapmer ASO showed similar RNA affinity but significantly improved activity compared to that of a sequence matched MOE ASO, thus establishing F-CeNA as a useful modification for antisense applications.  相似文献   

17.
A nucleoside with two nucleobases is incorporated into oligonucleotides. The synthetic building block, 2'-deoxy-2'-C-(2-(thymine-1-yl)ethyl)uridine, 2, is prepared from uridine via 5',3'-TIPDS-protected 2'-deoxy-2'-C-allyluridine by an oxidative cleavage of the allyl group, a Mitsunobu reaction for the introduction of thymine and appropriate deprotection reactions. This compound is converted into a DMT-protected phosphoramidite and incorporated once into a 13-mer oligodeoxynucleotide sequence, once in an isosequential LNA-modified oligodeoxynucleotide and four times in the middle of a 12-mer oligodeoxynucleotide. These sequences are mixed with different complementary DNA and RNA sequences in order to study the effect of the additional nucleobase in duplexes, in bulged duplexes and in three-way junctions. The first additional thymine is found to be well-accommodated in a DNA-RNA duplex, whereas a DNA-DNA duplex was slightly destabilised. A three-way junction with the additional thymine in the branching point is found to be stabilised in both a DNA-DNA and a DNA-RNA context but destabilised where the modified LNA-sequence is used. In a Mg2+-containing buffer, however, the relative stability of the three-way junctions is found to be opposite with especially the LNA-modified DNA-DNA complex being significantly stabilised by the additional nucleobase.  相似文献   

18.
[reaction: see text] The first solid-state (or solvent-free) synthesis of protected deoxyguanosine (dG) adducts of benzo[a]pyrene diol epoxides at room temperature is reported. Whereas dG adducts derived from cis- and trans-opening of (+/-)-7beta,8alpha-dihydroxy-9beta,10beta-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (DE-1 1) are formed as a 1:1 mixture, the direct opening of the diastereomeric (+/-)-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (DE-2, 2) produced a 15:85 ratio favoring the trans-opened dG adduct 7.  相似文献   

19.
We have shown here that (1) substitution of an exocyclic amino group of dG is effective in modulating the chemical properties of dG toward one-electron oxidation and (2) decomposition of the guanine radical cation was effectively suppressed near dPhG. These results indicate that dPhG is a prototype of nucleosides functioning as an intrinsic antioxidant of duplex DNA toward one-electron oxidation.  相似文献   

20.
The reaction of copper(I) iodide with 1, 3-imidazolidine-2-thione (SC3H6N2) in a 1:2 molar ratio (M/L) has formed unusual 1D polymers, {Cu6(mu3-SC3H6N2)4(mu-SC3H6N2)2(mu-I)2I4}n (1) and {Cu6(mu3-SC3H6N2)2(mu-SC3H6N2)4(mu-I)4I2}n (1a). A similar reaction with copper(I) bromide has formed a polymer {Cu6(mu3-SC3H6N2)2(mu-SC3H6N2)4(mu-Br)4Br2}n (3a), similar to 1a, along with a dimer, {Cu2(mu-SC3H6N2)2(eta1-SC3H6N2)2Br2} (3). Copper(I) chloride behaved differently, and only an unsymmetrical dimer, {Cu2(mu-SC3H6N2)(eta1-SC3H6N2)3Cl2} (4), was formed. Finally, reactions of copper(I) thiocyanate in 1:1 or 1:2 molar ratios yielded a 3D polymer, {Cu2(mu-SC3H6N2)2(mu-SCN)2}n (2). Crystal data: 1, C9H18Cu3I3N6S3, triclinic, P, a = 9.6646(11) A, b = 10.5520(13) A, c = 12.6177(15) A, alpha = 107.239(2) degrees , beta = 99.844(2) degrees , gamma = 113.682(2) degrees , V = 1061.8(2) A(3), Z = 2, R = 0.0333; 2, C(4)H(6)CuN(3)S(2), monoclinic, P2(1)/c, a = 7.864(3) A, b = 14.328(6) A, c = 6.737(2) A, beta = 100.07(3) degrees , V = 747.4(5), Z = 4, R = 0.0363; 3, C12H24Br2Cu2N8S4, monoclinic, C2/c, a = 19.420(7) A, b = 7.686(3) A, c = 16.706(6) A, beta = 115.844(6) degrees , V = 2244.1(14) A(3), Z = 4, R = 0.0228; 4, C12H24Cl2Cu2N8S4, monoclinic, P2(1)/c, a = 7.4500(6) A, b = 18.4965(15) A, c = 16.2131(14) A, beta = 95.036(2) degrees , V = 2225.5(3) A(3), Z = 4, R = 0.0392. The 3D polymer 2 exhibits 20-membered metallacyclic rings in its structure, while synthesis of linear polymers, 1 and 1a, represents an unusual example of I (1a)-S (1) bond isomerism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号