首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies in our laboratory have demonstrated that photodynamic therapy (PDT) of experimental bladder tumors leads to rapid destruction of the endothelial lining within the tumor microvasculature. Endothelial cell death during PDT may be a consequence of direct cell injury resulting from retention of photosensitizer within the endothelial cell or, alternatively, result from intravascular activation of circulating photosensitizer with subsequent indirect endothelial damage. In the experiments described here, we investigated the possibility that photosensitizer retained within the endothelial cell was sufficient to cause endothelial cell injury in the absence of circulating drug. The experimental model was rat aorta photosensitized in vivo via the intravenous injection of tin(II) etiopurpurin dichloride (SnET2), and subsequent in situ or in vitro (in explant culture) light (670 nm) treatment from an argon pumped dye laser. Damage to the lining of the aorta was assessed morphometrically by determining the areal density of silver stained endothelial cells. Results indicate that purpurin SnET2-PDT directly damages the endothelial lining.  相似文献   

2.
An important goal of photodynamic therapy (PDT) for treatment of various cancers is to shorten PDT-performing time and simultaneously enhance PDT efficacy. Here, we investigated the nontumor tissue distribution of and the tumor vascular damage caused by a new photosensitizer, DH-I-180-3, in mice with implanted EMT6 mammary tumor cells. In addition, we performed cell-based assays to evaluate the basic antitumor effect of DH-I-180-3/PDT in EMT6 cells. After administration of PDT, the type of cell death was characterized to be apoptosis, and a change in the mitochondrial membrane potential was also observed within minutes. On the other hand, tumor growth was remarkably retarded in vivo in mice that received DH-I-180-3/PDT, compared with mice in the control group, which were exposed to light irradiation alone. Finally, tumors in some mice nearly healed. The antitumor drug reached a maximum concentration approximately 3 h after administration. However, PDT was most effective when there was substantial accumulation of DH-I-180-3 in the tumor vasculature and in healthy tissue. The histological demonstration provided further evidence of tumor vascular damage. On the basis of these findings, we suggest that PDT with the photosensitizer DH-I-180-3 induces vascular damage with blood vessel shutdown, in addition to direct killing of tumor cells, in mice.  相似文献   

3.
The relationship between levels of in vivo accumulated photosensitizer (Photofrin II), photodynamic cell inactivation upon in vitro or in vivo illumination, and changing tumor oxygenation was studied in the radiation-induced fibrosarcoma (RIF) mouse tumor model. In vivo porphyrin uptake by tumor cells was assessed by using 14C-labeled photosensitizer, and found to be linear with injected photosensitizer dose over a range of 10 to 100 mg/kg. Cellular photosensitivity upon exposure in vitro to 630 nm light also varied linearly with in vivo accumulated photosensitizer levels in the range of 25 to 100 mg/kg injected Photofrin II, but was reduced at 10 mg/kg. Insignificant increases in direct photodynamic cell inactivation were observed following in vivo light exposure (135 J/cm2, 630 nm) with increasing cellular porphyrin levels. These data were inconsistent with expected results based on in vitro studies. Assessment of vascular occlusion and hypoxic cell fractions following photodynamic tumor treatment showed the development of significant tumor hypoxia, particularly at 50 and 100 mg/kg of Photofrin II, following very brief light exposures (1 min, 4.5 J/cm2). The mean hyupoxic cell fractions of 25 to 30% in these tumors corresponded closely with the surviving cell fractions found after tumor treatment in vivo, indicating that these hypoxic cells had been protected from PDT damage. Inoculation of tumor cells, isolated from tumors after porphyrin exposure, into porphyrin-free hosts, followed by in vivo external light treatment, resulted in tumor control in the absence of vascular tumor bed effects at high photosensitizer doses only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Targeted photodynamic therapy (PDT) in head/neck cancer patients with a conjugate of the anti-epidermal growth factor receptor (EGFR) antibody, Cetuximab and a phthalocyanine photosensitizer IR700DX is under way, but the exact mechanisms of action are still not fully understood. In this study, the EGFR-overexpressing human head/neck OSC-19-luc2-cGFP tumor with transfected GFP gene was used in a skin-fold window chamber model in BALB/c nude mice. The uptake and localization of the conjugate in the tumor and its surrounding normal tissues were studied by an intravital confocal laser scanning microscopy with image analyses. The tumor was also irradiated with 690 nm laser light 24 h after conjugate administration. The vascular and tumor responses were examined by morphological evaluation and immunohistochemistry (IHC). The amount of conjugate in the tumor peaked at 24–48 h after injection. Image analyses of colocalization correlation parameters demonstrated a high fraction of the conjugate IR700DX colocalized in the GFP-expressing tumor cells. PDT-treated tumors showed extensive necrotic/apoptotic destruction with little vascular damage, while IHC showed no HIF-1α expression and decreased EGFR and Ki67 expression with activated caspase-3 overexpression, indicating a direct killing of tumor cells through both necrotic and apoptotic cell death.  相似文献   

5.
The complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy. This study was aimed to synthesize a polycationic chitosan-conjugated rose bengal (CSRB) photosensitizer and test its antibiofilm efficacy on Enterococcus faecalis (gram positive) and Pseudomonas aeruginosa (gram negative) using photodynamic therapy. During experiments, CSRB was tested along with an anionic photosensitizer rose bengal (RB) and a cationic photosensitizer methylene blue (MB) for uptake and killing efficacy on 7-day-old E. faecalis and P. aeruginosa biofilms. Microbiological culture based analysis was used to analyze the cell viability, while laser scanning confocal microscopy (LSCM) was used to examine the structure of biofilm. The synthesized CSRB showed absorbance spectrum similar to the RB. The concentration of CSRB uptaken by both the bacterial biofilms was significantly higher than that of RB and MB (P < 0.05). Photoactivation resulted in significantly higher elimination of both bacterial biofilms sensitized with CSRB than RB and MB. The structure of biofilm under LSCM was found to be disrupted following CSRB treatment. The present study highlighted the importance of inherent cell membrane permeabilizing effect of chitosan and increased cell/biofilm uptake of conjugated photosensitizer to produce significant antibiofilm efficacy during photodynamic therapy.  相似文献   

6.
The effectiveness of intratumoral photoradiation in photodynamic therapy (PDT) using a polyporphyrin photosensitizer was studied in the RT-2 rat glioma model. One week after intracerebral implantation of RT-2 cells, experimental rats received a single i.p. injection of 2 mg/kg of Photofrin. After administration of the photosensitizer (48 h), the tumors were partially resected and the exposed cavity was irradiated with 15 J of laser light at a wavelength of 630 nm. Further treatment with a large craniectomy significantly enhanced rat survival. Control rats which received no photosensitizer but were treated with surgery, alone or in combination with laser irradiation, succumbed from early tumor recurrence. Photodynamic therapy without decompressive surgery resulted in hemorrhagic infarction of residual tumor and adjacent brain with focal cerebral edema which resulted in cerebral herniation and early death. Our results indicate that photodynamic therapy is effective in treating residual brain tumor but at the expense of brain tissue surrounding the tumor. Unless relieved, intracranial pressure from photodynamic therapy-associated cerebral edema in this animal model resulted in shortened survival.  相似文献   

7.
Chloroaluminum phthalocyanine (CAPC) was recently shown to photosensitize cell killing in culture and tumor destruction in vivo. Because this compound is potentially useful in the photodynamic therapy of cancer, its properties as a genotoxic agent were evaluated. Applying the technique of alkaline elution to study DNA integrity, it was found that CAPC could produce single-strand breaks in the DNA of Chinese hamster cells after exposure to white fluorescent light. At equicytotoxic doses, the number of DNA strand breaks produced by CAPC photosensitization was about three times lower than that induced by X-irradiation. During incubation in growth medium after exposure to CAPC-plus-fluorescent light, cells rejoined DNA strand breaks at a rate similar to that observed after X-irradiation. Resistance to 6-thioguanine (6-TG') or to ouabain (OUA') were used as end points of mutagenic potential. Following a treatment that caused -90% cell killing, there was a slight mutagenic effect, i.e. the frequencies were increased by -40% above the background or spontaneous mutations. However, this enhancement was not statistically significant. Taken together, the foregoing, plus an earlier observation that there is no variation in the sensitivity of cells to CAPC + light through the cell cycle, lead to the inferences that DNA damage does not play a major role in cell killing and that the mutagenic potential of this treatment is small.  相似文献   

8.
Photodynamic therapy employs photosensitizers for the selective destruction of tumor tissue while sparing the surrounding healthy tissue. Photosensitization may also be applied to the selective eradication of microorganisms. Photosensitized inactivation requires that the sensitizer bind to the target and therefore the factors that determine photosensitizer binding are critical to photosensitization selectivity. This paper reports the determination of some features of the binding site of the potent photosensitizer, Rose Bengal, in Salmonella bacteria and describes some of the factors that affect this binding. The shift in the wavelength of maximum fluorescence and experiments with the fluorescence quencher TNBS indicate that Rose Bengal is located in a non-aqueous compartment such as the outer membrane. The dye does not seem to significantly accumulate inside the cell, but rather to accumulate in the outer membrane. Time-dependent changes in sensitizer localization in two strains of Salmonella typhimurium that differ in cell wall formation, LT-2 and TA1975, correspond to their differences in susceptibility to photosensitized killing. Therefore these results provide clues to the factors that determine photosensitization selectivity. Understanding this phenomenon is essential for the efficient design of selective photosensitizers and for optimizing antitumor and antiviral photodynamic therapy.  相似文献   

9.
This paper describes the photodynamic characteristics of the new near-infrared photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (mTHPBC or SQN400) in normal rat and mouse tissues. A rat liver model of photodynamic tissue necrosis was used to determine the in vivo action spectrum and the dose-response relationships of tissue destruction with drug and light doses. The effect of varying the light irradiance and the time interval between drug administration and light irradiation on the biological response was also measured in the rat liver model. Photobleaching of mTHPBC was measured and compared with that of its chlorine analog (mTHPC) in normal mouse skin and an implanted mouse colorectal tumor. The optimum wavelength for biological activation of mTHPBC in rat liver was 739 nm. mTHPBC was found to have a marked drug-dose threshold of around 0.6 mg kg-1 when liver tissue was irradiated 48 h after drug administration. Below this administered drug dose, irradiation, even at very high light doses, did not cause liver necrosis. At administered doses above the photodynamic threshold the effect of mTHPBC-PDT was directly proportional to the product of the drug and light doses. No difference in the extent of liver necrosis produced by mTHPBC was found on varying the light irradiance from 10 to 100 mW cm-2. The extent of liver necrosis was greatest when tissue was irradiated shortly after mTHPBC administration and necrosis was absent when irradiation was performed 72 h or later after drug administration, suggesting that the drug was rapidly cleared from the liver. In vivo photobleaching experiments in mice showed that the rate of bleaching of mTHPBC was approximately 20 times greater than that of mTHPC. It is argued that this greater rate of bleaching accounts for the higher photodynamic threshold and this could be exploited to enhance selective destruction of tissues which accumulate the photosensitizer.  相似文献   

10.
In photodynamic therapy (PDT), light activates a photosensitizer added to a tissue, resulting in singlet oxygen formation and cell death. The photosensitizer phthalocyanine 4 (Pc 4) localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. The aim of this study was to determine how lysosomes contribute to PDT-induced cell killing by mitochondria-targeted photosensitizers such as Pc 4. We monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes. Bafilomycin was not toxic by itself, but greatly enhanced Pc 4-PDT-induced cell killing. To investigate whether iron loading of lysosomes affects bafilomycin-induced killing, cells were incubated with ammonium ferric citrate (30 μM) for 30 h prior to PDT. Ammonium ferric citrate enhanced Pc 4 plus bafilomycin-induced cell killing without having toxicity by itself. Iron chelators (desferrioxamine and starch-desferrioxamine) and the inhibitor of the mitochondrial calcium (and ferrous iron) uniporter, Ru360, protected against Pc 4 plus bafilomycin toxicity. These results support the conclusion that chelatable iron stored in the lysosomes enhances the efficacy of bafilomycin-mediated PDT and that lysosomal disruption augments PDT with Pc 4.  相似文献   

11.
Targeted drug delivery is an emerging technological strategy that enables nanoparticle systems to be responsive for tumor therapy. Magnetic mesoporous silica nanoparticles (MMSNs) were cloaked with red blood cell membrane (RBC). This integrates long circulation, photosensitizer delivery, and magnetic targeting for cancer therapy. In vivo experiments demonstrate that RBC@MMSNs can avoid immune clearance and achieve magnetic field (MF)‐induced high accumulation in a tumor. When light irradiation is applied, singlet oxygen rapidly generates from hypocrellin B (HB)‐loaded RBC@MMSN and leads to the necrosis of tumor tissue. Such a RBC‐cloaked magnetic nanocarrier effectively integrates immunological adjuvant, photosensitizer delivery, MF‐assisted targeting photodynamic therapy, which provides an innovative strategy for cancer therapy.  相似文献   

12.
Effective treatment delivery in photodynamic therapy (PDT) requires coordination of the light source, the photosensitizer, and the delivery device appropriate to the target tissue. Lasers, light-emitting diodes (LEDs), and lamps are the main types of light sources utilized for PDT applications. The choice of light source depends on the target location, photosensitizer used, and light dose to be delivered. Geometry of minimally accessible areas also plays a role in deciding light applicator type. Typically, optical fiber-based devices are used to deliver the treatment light close to the target. The optical properties of tissue also affect the distribution of the treatment light. Treatment light undergoes scattering and absorption in tissue. Most tissue will scatter light, but highly pigmented areas will absorb light, especially at short wavelengths. This review will summarize the basic physics of light sources, and describe methods for determining the dose delivered to the patient.  相似文献   

13.
Macrophages constitute a major part of natural tumor defense by their capacity to destroy selectively a broad range of tumor types upon specific activation. In the last couple of years, these cells have also been implicated as effector cells in the destruction of tumors by photodynamic therapy. In the present work, the potential role of macrophage-mediated tumor cytotoxicity after photodynamic treatment in vitro has been investigated with respect to photodynamic activation of macrophages for tumoricidal effector functions. Our data show that photodynamic treatment of highly pure murine bone-marrow-derived macrophages with the hematoporphyrin derivative Photosan-3 does not result in activation of these cells for cytotoxicity against YAC-1 tumor cells or secretion of tumor necrosis factor and nitric oxide, irrespective of co-stimulation with interferon-γ, a potent priming agent for macrophage antitumoral activity. On the contrary, treatment with higher photosensitizer doses is found to reduce markedly the viability of the macrophage effector cells. Thus, these results do not lend any support to the hypothesis of direct macrophage activation by photodynamic treatment. However, macrophages are found to be activated for tumoricidal effector functions indirectly by photodynamically killed tumor cells, in a way reminiscent of phagocytosis-inducing stimuli. It is thus suggested that recognition and phagocytosis of photodynamically destroyed tumor cells constitutes the major signal for local activation of macrophages in photodynamically treated tumor tissues, which may be crucial for final, specific eradication by the immune system of tumor cells surviving photodynamic treatment.  相似文献   

14.
The response to photodynamic therapy (PDT) mediated by photosensitizer Photofrin was examined with Lewis lung carcinomas growing in either complement-proficient C57BL/6 (B6) or complement-deficient complement C3 knockout (C3KO) mice. The results reveal that Photofrin-PDT was more effective in attaining cures of tumors in C3KO than in B6 hosts. Colony-forming ability of cells from tumors excised immediately after Photofrin-PDT confirmed that the direct cell killing effect was more pronounced in C3KO than in B6 hosts. In contrast, PDT mediated by photosensitizer benzoporphyrin derivative (BPD) produced higher cure rates of tumors in B6 hosts than those in C3KO hosts. Determination of tumor C3 levels by ELISA showed that Photofrin-PDT induced markedly more pronounced complement activation than BPD-PDT. Measurements of tumor oxygen tension immediately after PDT by Eppendorf pO2 histograph showed that Photofrin-PDT induced a marked decline in the oxygenation of tumors growing in B6 mice that was much less pronounced in C3KO hosts. With BPD-PDT the oxygen tensions in tumors in B6 and C3KO hosts decreased to a similar extent. This study indicates that complement activation in PDT-treated tumors that varies with different photosensitizers is an important determinant of tumor oxygen limitation effects directly associated with photodynamic action.  相似文献   

15.
Photodynamic dose is defined as the area under the curve of sensitizer level plotted as a function of light dose. This is a photochemical definition of dose. We will show that this definition is useful in predicting photobiological response. The photodestruction of sensitizer during photodynamic therapy is shown to result in an upper limit on the photodynamic dose which can be delivered by an unlimited light dose. This limit results in the opportunity to make total photodynamic dose uniform to considerable depths (one to two centimeters). The existence of thresholds for permanent tissue damage allows protection of normal tissue from the large light doses required to achieve this limiting dose deep in the tissue. Higher sensitizer levels in the tumor permit tumor destruction while the normal tissues are protected. A clinical trial to determine the proper level of injected dose necessary for these results is required. This theory of photodynamic therapy (PDT) dosimetry is tested in the DBA-SMT experimental mouse tumor system. Combinations of drug and light which are not reciprocal but are nearly equal by this theory are shown to give equivalent tumor control at seven days post treatment. Reciprocal combinations of drug and light fail to give equivalent results when they ae selected using the theory to choose a combination where reciprocity should fail.  相似文献   

16.
Conventional photodynamic treatment strategies are based on the principle of activating molecular oxygen in situ by light, mediated by a photosensitizer, which leads to the generation of reactive oxygen species and thereby causes cell death. A diarylethene‐derived peptidomimetic is presented that is suitable for photodynamic cancer therapy without any involvement of oxygen. This light‐sensitive molecule is not a mediator but is itself the cytotoxic agent. As a derivative of the cyclic amphiphilic peptide gramicidin S, the peptidomimetic exists in two thermally stable photoforms that are interconvertible by light of different wavelengths. The isomer generated by visible light shows much stronger toxicity against tumor cells than the UV‐generated isomer. First in vivo applications are demonstrated on a tumor animal model to illustrate how the peptidomimetic can be administered in the less toxic form and then activated locally in a solid tumor by visible light.  相似文献   

17.
The polar methanolic fraction (PMF) of the Hypericum perforatum L. extract has recently been developed and tested as a novel, natural photosensitizer for use in the photodynamic therapy (PDT), and photodynamic diagnosis (PDD). PMF has been tested on HL-60 leukemic cells and cord blood hemopoietic progenitors. In the present study, the efficacy of PMF as a phototoxic agent against urinary bladder carcinoma has been studied using the T24 (high grade metastatic cancer), and RT4 (primary low grade papillary transitional cell carcinoma) human bladder cancer cells. Following cell culture incubation, PMF was excited using 630 nm laser light. The photosensitizer exhibited significant photocytotoxicity in both cell lines at a concentration of 60microg/ml, with 4-8 J/cm(2) light dose, resulting in cell destruction from 80% to 86%. At the concentration of 20microg/ml PMF was not active in either cell line. These results were compared with the results obtained in the same cell lines, under the same conditions with a clinically approved photosensitizer, Photofrin. Photofrin was used in the maximum clinically tolerable dose of 4microg/ml, and it was also excited with 630 nm laser light. In the T24 cell Photofrin exhibited slightly less photocytotocixity, compared with PMF, resulting in 77% cell death with 8J/cm(2) light dose. However, against the RT4 cells Photofrin resulted in minimal cell death (9%) with even 8J/cm(2) light dose. Finally, the type of cell death induced by PMF photoactivation was studied using flow cytometry and DNA laddering. Cell death by PMF photodynamic action in these two bladder cell lines is caused predominently by apoptosis. The reported significant photocytotoxicity, selective localization, natural abundance, easy, and inexpensive preparation, underscore that the PMF extract hold the promise of being a novel, effective PDT photosensitizer.  相似文献   

18.
Abstract Very little is known about the applicability of the metabolic and biochemical events observed in cell culture systems to in vivo tumor shrinkage following photodynamic therapy (PDT). The purpose of this study was to assess whether PDT induces apoptosis during tumor ablation in vivo . We treated radiation-induced fibrosarcoma (RIF-1) tumors grown in C3H/HeN mice with PDT employing three photosensitizers, Photofrin-II, chloroaluminum phthalocyanine tetrasulfonate, or Pc IV (a promising phthalocyanine developed in this laboratory). Each photosensitizer was injected intraperitoneally and 24 h later the tumors were irradiated with an appropriate wavelength of red light using an argon-pumped dye laser. During the course of tumor shrinkage, the tumors were removed at 1, 2, 4 and 10 h post-PDT for DNA fragmentation, histopathologic, and electron microscopic studies. Markers of apoptosis, viz . the ladder of nucleosome-size DNA fragments, increased apoptotic bodies, and condensation of chromatin material around the periphery of the nucleus, were evident in tumor tissue even 1 h post-PDT; the extent of these changes increased during the later stages of tumor ablation. No changes were observed in tumors given photosensitizer alone or irradiation alone. Our data suggest that the damage produced by in vivo PDT may activate endonucleolysis and chromatin condensation, and that apoptosis is an early event in tumor shrinkage following PDT.  相似文献   

19.
The photodynamic effects of α-terthienyl (αT) in near-UV light (UV-A) on Escherichia coli showed close agreement with the light absorption of αT at different wavelengths suggesting that αT is the primary absorbing molecule responsible for the photosensitized reaction. Studies with DNA repair deficient mutants of E. coli indicated that the bactericidal action of αT/UV-A was not mediated by DNA damage, in direct contrast to the well-known photosensitizer, 8-methoxypsoralen. By using a closed borosilicate glass reaction vessel and various gas mixtures, it was demonstrated that photosensitization of both E. coli and a more resistant bacterium, Pseudomonas aeruginosa , was absolutely dependent on the presence of oxygen. The rate of killing by αT/UV-A showed a rather small dependence on preincubation temperatures, with quite rapid killing at 5°C, suggesting that the movement of αT across the cytoplasmic membrane of E. coli is not the rate limiting step in killing and perhaps is not even necessary for killing. Sodium dodecyl sulphate-polyacrylamide gels of cell membrane proteins after 15 and 30min of treatment with αT/UV-A showed substantial random crosslinking of these proteins. The results taken overall suggest that αT is a photodynamic photosensitizer which exerts its primary effect at the level of the cytoplasmic membrane.  相似文献   

20.
Photodynamic therapy (PDT) is an effective treatment for a number of solid malignancies. In this work, the antitumor efficacy of photodynamic therapy for murine B16 melanoma with intravenous administration of a new photosensitizer (PS) based on the chlorin e6 conjugate with a prostate-specific membrane antigen (PSMA) was studied in vivo. We have previously published the data obtained in the first part of the study: the dynamics of PS accumulation in the tumor and surrounding tissues and the antitumor efficacy of the photodynamic therapy, which was evaluated by the regression parameters and morphological characteristics of the tumors—including by the complete regression of the tumors, the absolute growth rate of the tumors among the mice with continued tumor growth, and an increase in life expectancy compared to the control. The criterion for a complete cure was the absence of signs of tumor recurrence within 90 days after therapy. The conducted studies demonstrated the high efficiency of the new photosensitizer for the photodynamic therapy of B16 melanoma. This article presents a continuation of this work, including histological studies of the zones exposed to laser irradiation on the 21st day after treatment and an assessment of the therapeutic potential of photodynamic therapy for the destruction of tumor cells. Pathological studies in the zones of photodynamic exposure revealed that the effectiveness of the PDT depended on the PS dose and the laser irradiation parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号