首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The lithium amide (LiNH(2)) + lithium hydride (LiH) system is one of the most attractive light-weight materials options for hydrogen storage. Its dehydrogenation involves mass transport in the bulk (amide) crystal through lattice defects. We present a first-principles study of native point defects and dopants in LiNH(2) using density functional theory. We find that both Li-related defects (the positive interstitial Li(i)(+) and the negative vacancy V(Li)(-)) and H-related defects (H(i)(+) and V(H)(-)) are charged. Li-related defects are most abundant. Having diffusion barriers of 0.3-0.5 eV, they diffuse rapidly at moderate temperatures. V(H)(-) corresponds to the [NH](2-) ion. It is the dominant species available for proton transport with a diffusion barrier of ~0.7 eV. The equilibrium concentration of H(i)(+), which corresponds to the NH(3) molecule, is negligible in bulk LiNH(2). Dopants such as Ti and Sc do not affect the concentration of intrinsic defects, whereas Mg and Ca can alter it by a moderate amount. Ti and Mg are easily incorporated into the LiNH(2) lattice, which may affect the crystal morphology on the nano-scale.  相似文献   

2.
Metal imides (Li(2)NH, CaNH), a metal amide (LiNH(2)) and metal hydrides (LiH, CaH(2)) were synthesized by ball milling of their respective metal nitrides (Li(3)N, Ca(3)N(2)) in a H(2) atmosphere at 1 MPa and at room temperature.  相似文献   

3.
Room temperature ionic liquids (ILs) are stable liquids composed of anions and cations. 1-ethyl-3-methyl-imidazolium (EMIm, EMI) is a popular and important cation that produces thermally stable ILs with various anions. In this study two amide-type anions, bis(trifluoro-methanesulfonyl)amide [N(SO(2)CF(3))(2), TFSA, TFSI, NTf(2), or Tf(2)N] and bis(fluorosulfonyl)amide [(N(SO(2)F)(2), FSA, or FSI] were investigated by multinuclear NMR spectroscopy. In addition to EMIm-TFSA and EMIm-FSA, lithium-salt-doped binary systems were prepared (EMIm-TFSA-Li and EMIm-FSA-Li). The spin-lattice relaxation times (T(1)) were measured by (1)H, (19)F, and (7)Li NMR spectroscopy and the correlation times of (1)H NMR, τ(c)(EMIm) (8 × 10(-10) to 3 × 10(-11) s) for the librational molecular motion of EMIm and those of (7)Li NMR, τ(c)(Li) (5 × 10(-9) to 2 × 10(-10) s) for a lithium jump were evaluated in the temperature range between 253 and 353 K. We found that the bulk viscosity (η) versus τ(c)(EMIm) and cation diffusion coefficient D(EMIm) versus the rate 1/τ(c)(EMIm) have good relationships. Similarly, linear relations were obtained for the η versus τ(c)(Li) and the lithium diffusion coefficient D(Li) versus the rate 1∕τ(c)(Li). The mean one-jump distances of Li were calculated from τ(c)(Li) and D(Li). The experimental values for the diffusion coefficients, ionic conductivity, viscosity, and density in our previous paper were analyzed by the Stokes-Einstein, Nernst-Einstein, and Stokes-Einstein-Debye equations for the neat and binary ILs to clarify the physicochemical properties and mobility of individual ions. The deviations from the classical equations are discussed.  相似文献   

4.
Mechanism of hydrogenation reaction in the Li-Mg-N-H system   总被引:1,自引:0,他引:1  
The Li-Mg-N-H system composed of 3 Mg(NH2)2 and 8 LiH reversibly desorbs/absorbs approximately 7 wt % of H2 at 120-200 degrees C and transforms into 4 Li2NH and Mg3N2 after dehydrogenation. In this work, the mechanism of the hydrogenation reaction from 4 Li2NH and Mg3N2 to 8 LiH and 3 Mg(NH2)2 was investigated in detail. Experimental results indicate that 4 Li2NH is first hydrogenated into 4 LiH and 4 LiNH2. At the next step, 4 LiNH2 decomposes into 2 Li2NH and 2 NH3, and the emitted 2 NH3 reacts with (1/2) Mg3N2 and produces the (3/2) Mg(NH2)2 phase, while the produced 2 Li2NH is hydrogenated into 2 LiH and 2 LiNH2 again. Such successive steps continue until all 4 Li2NH and Mg3N2 completely transform into 8 LiH and 3 Mg(NH2)2 by hydrogenation.  相似文献   

5.
Reactions between Mg(+) and O(3), O(2), N(2), CO(2) and N(2)O were studied using the pulsed laser photo-dissociation at 193 nm of Mg(C(5)H(7)O(2))(2) vapour, followed by time-resolved laser-induced fluorescence of Mg(+) at 279.6 nm (Mg(+)(3(2)P(3/2)-3(2)S(1/2))). The rate coefficient for the reaction Mg(+) + O(3) is at the Langevin capture rate coefficient and independent of temperature, k(190-340 K) = (1.17 ± 0.19) × 10(-9) cm(3) molecule(-1) s(-1) (1σ error). The reaction MgO(+) + O(3) is also fast, k(295 K) = (8.5 ± 1.5) × 10(-10) cm(3) molecule(-1) s(-1), and produces Mg(+) + 2O(2) with a branching ratio of (0.35 ± 0.21), the major channel forming MgO(2)(+) + O(2). Rate data for Mg(+) recombination reactions yielded the following low-pressure limiting rate coefficients: k(Mg(+) + N(2)) = 2.7 × 10(-31) (T/300 K)(-1.88); k(Mg(+) + O(2)) = 4.1 × 10(-31) (T/300 K)(-1.65); k(Mg(+) + CO(2)) = 7.3 × 10(-30) (T/300 K)(-1.59); k(Mg(+) + N(2)O) = 1.9 × 10(-30) (T/300 K)(-2.51) cm(6) molecule(-2) s(-1), with 1σ errors of ±15%. Reactions involving molecular Mg-containing ions were then studied at 295 K by the pulsed laser ablation of a magnesite target in a fast flow tube, with mass spectrometric detection. Rate coefficients for the following ligand-switching reactions were measured: k(Mg(+)·CO(2) + H(2)O → Mg(+)·H(2)O + CO(2)) = (5.1 ± 0.9) × 10(-11); k(MgO(2)(+) + H(2)O → Mg(+)·H(2)O + O(2)) = (1.9 ± 0.6) × 10(-11); k(Mg(+)·N(2) + O(2)→ Mg(+)·O(2) + N(2)) = (3.5 ± 1.5) × 10(-12) cm(3) molecule(-1) s(-1). Low-pressure limiting rate coefficients were obtained for the following recombination reactions in He: k(MgO(2)(+) + O(2)) = 9.0 × 10(-30) (T/300 K)(-3.80); k(Mg(+)·CO(2) + CO(2)) = 2.3 × 10(-29) (T/300 K)(-5.08); k(Mg(+)·H(2)O + H(2)O) = 3.0 × 10(-28) (T/300 K)(-3.96); k(MgO(2)(+) + N(2)) = 4.7 × 10(-30) (T/300 K)(-3.75); k(MgO(2)(+) + CO(2)) = 6.6 × 10(-29) (T/300 K)(-4.18); k(Mg(+)·H(2)O + O(2)) = 1.2 × 10(-27) (T/300 K)(-4.13) cm(6) molecule(-2) s(-1). The implications of these results for magnesium ion chemistry in the atmosphere are discussed.  相似文献   

6.
Nano-composites of LiNH(2)-LiH-xMg(BH(4))(2) (0 ≤ x ≤ 2) were prepared by plasma metal reaction followed by a nucleation growth method. Highly reactive LiNH(2)-LiH hollow nanoparticles offered a favorable nucleus during a precipitation process of liquid Mg(BH(4))(2)·OEt(2). The electron microscopy results suggested that more than 90% of the obtained nano-composites were in the range 200-400 nm. Because of the short diffusion distance and ternary mixture self-catalyzing effect, this material possesses enhanced hydrogen (de)sorption attributes, including facile low-temperature kinetics, impure gases attenuation and partial reversibility. The optimal hydrogen storage properties were found at the composition of LiNH(2)-LiH-0.5Mg(BH(4))(2), which was tentatively attributed to a Li(4)(NH(2))(2)(BH(4))(2) intermediate. 5.3 wt% hydrogen desorption could be recorded at 150 °C, with the first 2.2 wt% release being reversible. This work suggests that controlled in situ hybridization combined with formula optimization can improve hydrogen storage properties.  相似文献   

7.
Models for Li(+) ion mobility were developed and investigated in the 'corrugated layer' orthorhombic phase of Li(1-x)FeO(2), an attractive possible electrode material for reversible lithium ion batteries. The ground-state crystal energy was computed by first-principles DFT (Density-Functional-Theory) methods, based on the use of the hybrid B3LYP functional with localized Gaussian-type basis sets. Appropriate supercells were devised as needed, with full least-energy structure optimization. In the defect-free case (x = 0), ion diffusion was found to take place cooperatively inside a fraction of active lithium layers separated by inert ones, so as to reduce lattice strain; intermediate bottleneck states of Li are either in tetrahedral (energy barrier ΔE(a) = 0.410 eV) or linear (ΔE(a) = 0.468 eV) coordination. For the Li(0.75)FeO(2) deintercalated material a number of low energy vacancy configurations were considered, investigating also the vacancy influence on electron density of states and atomic charge distribution. The most favourable ion transport mechanisms (ΔE(a) = 0.292 and 0.304 eV) imply a linear Li bottleneck state, with all lithium layers active and a quite small lattice strain. Accordingly, in the defective material the predicted ionic conductivity at room temperature rises from 10(-5)-10(-6) (LiFeO(2)) to 4 × 10(-4) ohm(-1) cm(-1) (Li(0.75)FeO(2)).  相似文献   

8.
Li-N-H compounds hold promise as novel hydrogen-storage materials with high gravimetric hydrogen densities. Because the dehydriding reaction caused by the decomposition of LiNH(2) requires a higher temperature than desired, much effort has been devoted to the destabilization of LiNH(2) to decrease the decomposition temperature. In particular, there has been recent experimental evidence for lowering the temperature by partial substitution of Li by Mg. However, the reason is not clear. In this study, we have employed density functional theory to investigate LiNH(2) and partially Li-substituted systems aiming to understand the effects of the substitution on the destabilization of the NH(2) species. K, a more electropositive element, and Mg, a more electronegative element, have been chosen as two probes to illustrate the effects. We have focused on the investigation of effects of substitutions on the N-H bond strength that is regarded as a qualitative indicator of the decomposition temperature. We have found that in both cases the N-H bonds are weakened, in particular, the Mg substitute appears to be more effective in the destabilization of the NH(2). The relative strength of the metal-N ionic bonding has been found to be a key factor to explain the effects of the substitutes. These have been discussed in detail in terms of Wannier function analyses.  相似文献   

9.
The decomposition of lithium amide (LiNH2) to lithium imide (Li2NH) and ammonia (NH3) with and without high-energy ball milling is investigated to lay a foundation for identifying methods to enhance the hydrogen uptake/release of the lithium amide and lithium hydride mixture. A wide range of analytical instruments are utilized to provide unambiguous evidence of the effect of mechanical activation. It is shown that ball milling reduces the onset temperature for the decomposition of LiNH2 from 120 degrees C to room temperature. The enhanced decomposition via ball milling is attributed to mechanical activation related to the formation of nanocrystallites, the reduced particle size, the increased surface area, and the decreased activation energy. The more mechanical activation there is, then the more improvement there is in enhancing the decomposition of LiNH2. It also is found that the activation energy for the decomposition of LiNH2 without ball milling is 243.98 kJ/mol, which is reduced to 222.20 kJ/mol after ball milling at room temperature for 45 min and is further reduced to 138.05 kJ/mol after ball milling for 180 min. The rate of the isothermal decomposition at the later phase of the LiNH2 decomposition is controlled by diffusion of NH3 through the Li2NH layer.  相似文献   

10.
Electronic structure calculations have been used to determine and compare the thermodynamics of H(2) release from ammonia borane (NH(3)BH(3)), lithium amidoborane (LiNH(2)BH(3)), and sodium amidoborane (NaNH(2)BH(3)). Using two types of exchange correlation functional we show that in the gas-phase the metal amidoboranes have much higher energies of complexation than ammonia borane, meaning that for the former compounds the B-N bond does not break upon dehydrogenation. Thermodynamically however, both the binding energy for H(2) release and the activation energy for dehydrogenation are much lower for NH(3)BH(3) than for the metal amidoboranes, in contrast to experimental results. We reconcile this by also investigating the effects of dimer complexation (2×NH(3)BH(3), 2×LiNH(2)BH(3)) on the dehydrogenation properties. As previously described in the literature the minimum energy pathway for H(2) release from the 2×NH(3)BH(3) complex involves the formation of a diammoniate of diborane complex ([BH(4)](-)[NH(3)BH(2)NH(3)](+)). A new mechanism is found for dehydrogenation from the 2×LiNH(2)BH(3) dimer that involves the formation of an analogous dibroane complex ([BH(4)](-)[LiNH(2)BH(2)LiNH(2)](+)), intriguingly it is lower in energy than the original dimer (by 0.13 eV at ambient temperatures). Additionally, this pathway allows almost thermoneutral release of H(2) from the lithium amidoboranes at room temperature, and has an activation barrier that is lower in energy than for ammonia borane, in contrast to other theoretical research. The transition state for single and dimer lithium amidoborane demonstrates that the light metal atom plays a significant role in acting as a carrier for hydrogen transport during the dehydrogenation process via the formation of a Li-H complex. We posit that it is this mechanism which is responsible, in condensed molecular systems, for the improved dehydrogenation thermodynamics of metal amidoboranes.  相似文献   

11.
It is a common observation that when ionic liquids are added to electrolytes the performances of lithium ion cells become poor, while the thermal safeties of the electrolytes might be improved. In this study, this behavior is investigated based on the kinetics of ionic diffusion. As a model ionic liquid, we chose butyldimethylimidazolium hexafluorophosphate (BDMIPF(6)). The common solvent was propylene carbonate (PC), and lithium hexafluorophosphate (LiPF(6)) was selected as the lithium conducting salt. Ionic diffusion coefficients are estimated by using a pulsed field gradient NMR technique. From a basic study on the model electrolytes (BDMIPF(6) in PC, LiPF(6) in PC, and BDMIPF(6) + LiPF(6) in PC), it was found that the BDMI(+) from BDMIPF(6) shows larger diffusion coefficients than the Li(+) from LiPF(6). However, the anionic (PF(6)(-)) diffusion coefficients present little difference between the model electrolytes. The higher diffusion coefficient of BDMI(+) than that of Li(+) suggests that the poor C-rate performance of lithium ion cells containing ionic liquids as an electrolyte component can be attributed to the two-cation competition between Li(+) and BDMI(+).  相似文献   

12.
The oxidative stability of glyme molecules is enhanced by the complex formation with alkali metal cations. Clear liquid can be obtained by simply mixing glyme (triglyme or tetraglyme) with lithium bis(trifluoromethylsulfonyl)amide (Li[TFSA]) in a molar ratio of 1:1. The equimolar complex [Li(triglyme or tetraglyme)(1)][TFSA] maintains a stable liquid state over a wide temperature range and can be regarded as a room-temperature ionic liquid consisting of a [Li(glyme)(1)](+) complex cation and a [TFSA](-) anion, exhibiting high self-dissociativity (ionicity) at room temperature. The electrochemical oxidation of [Li(glyme)(1)][TFSA] takes place at the electrode potential of ~5 V vs Li/Li(+), while the oxidation of solutions containing excess glyme molecules ([Li(glyme)(x)][TFSA], x > 1) occurs at around 4 V vs Li/Li(+). This enhancement of oxidative stability is due to the donation of lone pairs of ether oxygen atoms to the Li(+) cation, resulting in the highest occupied molecular orbital (HOMO) energy level lowering of a glyme molecule, which is confirmed by ab initio molecular orbital calculations. The solvation state of a Li(+) cation and ion conduction mechanism in the [Li(glyme)(x)][TFSA] solutions is elucidated by means of nuclear magnetic resonance (NMR) and electrochemical methods. The experimental results strongly suggest that Li(+) cation conduction in the equimolar complex takes place by the migration of [Li(glyme)(1)](+) cations, whereas the ligand exchange mechanism is overlapped when interfacial electrochemical reactions of [Li(glyme)(1)](+) cations occur. The ligand exchange conduction mode is typically seen in a lithium battery with a configuration of [Li anode|[Li(glyme)(1)][TFSA]|LiCoO(2) cathode] when the discharge reaction of a LiCoO(2) cathode, that is, desolvation of [Li(glyme)(1)](+) and insertion of the resultant Li(+) into the cathode, occurs at the electrode-electrolyte interface. The battery can be operated for more than 200 charge-discharge cycles in the cell voltage range of 3.0-4.2 V, regardless of the use of ether-based electrolyte, because the ligand exchange rate is much faster than the electrode reaction rate.  相似文献   

13.
Molecular dynamics (MD) simulations have been performed on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (mppy(+)TFSI(-)) and N,N-dimethyl- pyrrolidinium bis(trifluoromethanesulfonyl)imide (mmpy(+)TFSI(+)) ionic liquids (ILs) doped with 0.25 mol fraction LiTFSI salt at 303-500 K. The liquid density, ion self-diffusion coefficients, and conductivity predicted by MD simulations were found to be in good agreement with experimental data, where available. MD simulations reveal that the Li(+) environment is similar in mppy(+)TFSI(-) and mmpy(+)TFSI(+) ILs doped with LiTFSI. The Li(+) cations were found to be coordinated on average by slightly less than four oxygen atoms with each oxygen atom being contributed by a different TFSI(-) anion. Significant lithium aggregation by sharing up to three TFSI(-) anions bridging two lithiums was observed, particularly at lower temperatures where the lithium aggregates were found to be stable for tens of nanoseconds. Polarization of TFSI(-) anions is largely responsible for the formation of such lithium aggregates. Li(+) transport was found to occur primarily by exchange of TFSI(-) anions in the first coordination shell with a smaller (approximately 30%) contribution also due to Li(+) cations diffusing together with their first coordination shell. In both ILs, ion self-diffusion coefficients followed the order Li(+) < TFSI(-) < mmpy(+) or mppy(+) with all ion diffusion in mmpy(+)TFSI(-) being systematically slower than that in mppy(+)TFSI(-). Conductivity due to the Li(+) cation in LiTFSI doped mppy(+)TFSI(-) IL was found to be greater than that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte but significantly lower than that for an ethylene carbonate/LiTFSI liquid electrolyte. Finally, the time-dependent shear modulus for the LiTFSI doped ILs was found to be similar to that for a model poly(ethylene oxide)(PEO)/LiTFSI polymer electrolyte on the subnanosecond time scale.  相似文献   

14.
The effects of supporting electrolytes and of pressure on the electrode reactions of the aqueous CoW(12)O(40)(5-/6-) couple at 25 degrees C are reported, together with limited data on PW(12)O(40)(3-)/4-) and PW(12)O(40)(4-/5-). The half-wave potentials E(1/2) for the CoW(12) couple become moderately more positive with increasing electrolyte concentration and cationic charge, and also in the sequences Li(+) approximately Na(+) < NH(4)(+) < or = H(+) < K(+) < Rb(+) < Cs(+) and Na(+) < Mg(2+) < Ca(2+) < Eu(3+). The mean diffusion coefficients for CoW(12) with the 1:1 electrolytes are independent of electrolyte concentration and rise only slightly from Li(+) to Cs(+), averaging (2.4 +/- 0.3) x 10(-6) cm(2) s(-1). Neither the volumes of activation for diffusion Delta V(diff)(++) (average -0.9 +/- 1.1 cm(3) mol(-1)) nor the electrochemical cell reaction volumes Delta V(Ag/AgCl) (average -22 +/- 2 cm(3) mol(-1)) for the CoW(12) couple show significant dependence on electrolyte identity or concentration. For the PW(12)(3-/4-) and PW(12)(4-/5-) couples, Delta V(Ag/AgCl) = -14 and -26 cm(3) mol(-1), respectively, suggesting a dependence on Delta(z(2)) (z = ionic charge number) as predicted by the Born-Drude-Nernst theory of electrostriction of solvent, but comparison with Delta V(Ag/AgCl) for CoW(12) and other anion-anion couples shows that the Born-Drude-Nernst approach fails in this context. For aqueous electrode reactions of CoW(12), as for other anionic couples such as cyanometalates, the standard rate constants k(el) show specific cation catalysis (Na(+) < K(+) < Rb(+) < Cs(+)), and Delta V(el++) is invariably positive, in the presence of supporting electrolytes. For the heavier group 1 cations, Delta V(el++) is particularly large (10-15 cm(3) mol(-1)), consistent with a partial dehydration of the cation to facilitate catalysis of the electron-transfer process. The positive values of Delta V(el++) for the CoW(12) couple cannot be attributed to rate control by solvent dynamics, which would lead to Delta V(el++) < or = Delta V(diff++), i.e., to negative or zero Delta V(el++) values. These results stand in sharp contrast to those for aqueous cationic couples, for which k(el) shows relatively little influence of the nature of the counterion and Delta V(el++) is always negative.  相似文献   

15.
Lithium ion batteries have shown great promise in electrical energy storage with enhanced energy density, power capacity, charge-discharge rates, and cycling lifetimes. However common fluid electrolytes consisting of lithium salts dissolved in solvents are toxic, corrosive, or flammable. Solid electrolytes with superionic conductivity can avoid those shortcomings and work with a metallic lithium anode, thereby allowing much higher energy densities. Here we present a novel class of solid electrolytes with three-dimensional conducting pathways based on lithium-rich anti-perovskites (LiRAP) with ionic conductivity of σ > 10(-3) S/cm at room temperature and activation energy of 0.2-0.3 eV. As temperature approaches the melting point, the ionic conductivity of the anti-perovskites increases to advanced superionic conductivity of σ > 10(-2) S/cm and beyond. The new crystalline materials can be readily manipulated via chemical, electronic, and structural means to boost ionic transport and serve as high-performance solid electrolytes for superionic Li(+) conduction in electrochemistry applications.  相似文献   

16.
The solid-state reaction between LiNH2 and LiH potentially offers an effective route for hydrogen storage if it can be tailored to meet all the requirements for practical applications. To date, there still exists large uncertainty on the mechanism of the reaction--whether it is mediated by a transient NH3 or directly between LiNH2 and LiH. In an effort to clarify this issue and improve the reactivity, the effects of selected nitrides were investigated here by temperature-programmed desorption, X-ray diffraction, in-situ infrared analysis, and hydrogen titration. The results show that the reaction of LiNH2 with LiH below 300 degrees C is a heterogeneous solid-state reaction controlled by Li+ diffusion from LiH to LiNH2 across the interface. At the LiNH2/LiH interface, an ammonium ion Li2NH2+ and a penta-coordinated nitrogen Li2NH3 could be the intermediate states leading to the production of hydrogen and the formation of lithium imide. In addition, it is identified that BN is an efficient "catalyst" that improves Li+ diffusion and hence the kinetics of the reaction between LiNH2 and LiH. Hydrogen is fully released within 7 h at 200 degrees C with BN addition, rather than several days without the modification.  相似文献   

17.
Li-Na ternary amidoborane, Na[Li(NH(2)BH(3))(2)], was recently synthesized by reacting LiH and NaH with NH(3)BH(3). This mixed-cation amidoborane shows improved dehydrogenation performance compared to that of single-cation amidoboranes, i.e., LiNH(2)BH(3) and NaNH(2)BH(3). In this paper, we synthesized the Li-Na ternary amidoborane by blending and re-crystallizing equivalent LiNH(2)BH(3) and NaNH(2)BH(3) in tetrahydrofuran (THF), and employed first-principles calculations and the special quasirandom structure (SQS) method to theoretically explore the likelihood for the existence of Li(1-x)Na(x)(NH(2)BH(3)) for various Li/Na ratios. The thermodynamic, electronic and phononic properties were investigated to understand the possible dehydrogenation mechanisms of Na[Li(NH(2)BH(3))(2)].  相似文献   

18.
The role of B(CN)(4)(-) (Bison) as a component of battery electrolytes is addressed by investigating the ionic conductivity and phase behaviour of ionic liquids (ILs), ion association mechanisms, and the electrochemical stability and cycling properties of LiBison based electrochemical cells. For C(4)mpyrBison and C(2)mimBison ILs, and mixtures thereof, high ionic conductivities (3.4 ≤σ(ion)≤ 18 mS cm(-1)) are measured, which together with the glass transition temperatures (-80 ≤T(g)≤-76 °C) are found to shift systematically for most compositions. Unfortunately, poor solubility of LiBison in these ILs hinders their use as solvents for lithium salts, although good NaBison solubility offers an alternative application in Na(+) conducting electrolytes. The poor IL solubility of LiBison is predicted to be a result of a preferred monodentate ion association, according to first principles modelling, supported by Raman spectroscopy. The solubility is much improved in strongly Li(+) coordinating oligomers, for example polyethylene glycol dimethyl ether (PEGDME), with the practical performance tested in electrochemical cells. The electrolyte is found to be stable in Li/LiFePO(4) coin cells up to 4 V vs. Li and shows promising cycling performance, with a capacity retention of 99% over 22 cycles.  相似文献   

19.
梳状高分子固体电解质的离子导电性研究   总被引:2,自引:2,他引:0  
丁黎明 《电化学》1996,2(3):299-304
深入研究了交替马来酸酐共聚物多缩乙二醇酯(CP350)两种锂盐络合物CP350/LiAsF_6和CP350/LiPF_6的离子传导性能,给出了与复阻抗谱相对应的等效电路.离子电导率随[Li]/[EO]的变化而出现一极大值,室温下,两体系电导率极大值分别为1.38×10(-4),8.32×10(-5)S/cm.电导率随温度升高而增加.导电行为呈非-Arrhenius特征.阴阳离子半径之和(r_c+r_a)愈大,离子电导率愈高.  相似文献   

20.
Room-temperature ionic liquids (RTIL, IL) are stable liquids composed of anions and cations. N-methyl-N-propyl-pyrrolidinium (P(13), Py(13), PYR(13), or mppy) is an important cation and produces stable ILs with various anions. In this study two amide-type anions, bis(trifluoromethanesulfonyl)amide [N(SO(2)CF(3))(2), TFSA, TFSI, NTf(2), or Tf(2)N] and bis(fluorosulfonyl)amide [N(SO(2)F)(2), FSA, or FSI], were investigated. In addition to P(13)-TFSA and P(13)-FSA, lithium salt doped samples were prepared (P(13)-TFSA-Li and P(13)-FSA-Li). The individual ion diffusion coefficients (D) and spin-lattice relaxation times (T(1)) were measured by (1)H, (19)F, and (7)Li NMR. At the same time, the ionic conductivity (σ), viscosity (η), and density (ρ) were measured over a wide temperature range. The van der Waals volumes of P(13), TFSA, FSA, Li(TFSA)(2), and Li(FSA)(3) were estimated by molecular orbital calculations. The experimental values obtained in this study were analyzed by the classical Stokes-Einstein, Nernst-Einstein (NE), and Stokes-Einstein-Debye equations and Walden plots were also made for the neat and binary ILs to clarify physical and mobile properties of individual ions. From the temperature-dependent velocity correlation coefficients for neat P(13)-TFSA and P(13)-FSA, the NE parameter 1-ξ was evaluated. The ionicity (electrochemical molar conductivity divided by the NE conductivity from NMR) and the 1-ξ had exactly the same values. The rotational and translational motions of P(13) and jump of a lithium ion are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号