首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neighbouring groups can be strategically located to polarise HO.OH intramolecular hydrogen bonds in an intended direction. A group with a unique hydrogen-bond donor or acceptor character, located at hydrogen-bonding distance to a particular OH group, has been used to initiate the hydrogen-bond network and to polarise a HO.OH hydrogen bond in a predicted direction. This enhanced the donor character of a particular OH group and made it a cooperative hydrogen-bond centre. We have proved that a five-membered-ring intramolecular hydrogen bond established between an amide NH group and a hydroxy group (1,2-e,a), which is additionally located in a 1,3-cis-diaxial relationship to a second hydroxy group, can be used to select a unique direction on the six-membered-ring intramolecular hydrogen bond between the two axial OH groups, so that one of them behaves as an efficient cooperative donor. Talose derivative 3 was designed and synthesised to prove this hydrogen-bonding network by NMR spectroscopy, and the mannopyranoside derivatives 1 and 2 were used as models to demonstrate the presence in solution of the 1,2-(e,a)/five-membered-ring intramolecular hydrogen bond. Once a well-defined hydrogen-bond is formed between the OH and the amido groups of a pyranose ring, these hydrogen-bonding groups no longer act as independent hydrogen-bonding centres, but as hydrogen-bonding arrays. This introduces a new perspective on the properties of carbohydrate OH groups and it is important for the de novo design of molecular recognition processes, at least in nonpolar media. Carbohydrates 1-3 have shown to be efficient phosphate binders in nonpolar solvents owing to the presence of cooperative hydroxy centres in the molecule.  相似文献   

2.
Water-soluble poly(m-ethynylpyridine)s were designed to realize saccharide recognition in protic media. UV/Vis, 1H NMR, and fluorescence measurements revealed that the polymer forms a helical higher order structure by solvophobic interactions between the ethynylpyridine units in the protic medium. The resulting pore in the helix behaves like a binding pocket in proteins, by taking advantage of inwardly directed hydrogen-bonding functional groups of the polymers. Molecular recognition of native saccharides by the polymers was investigated by circular dichroism (CD). The chirality of the saccharide was transferred to the helical sense of the polymers, accompanied by the appearance of induced CDs (ICDs) in the absorptive region of the polymers. In MeOH/water (10/1), mannose and allose showed intense ICDs, and the apparent association constant between the polymer and D-mannose was 14 M(-1).  相似文献   

3.
A supramolecular material containing quadruple hydrogen bonding sites was prepared by reacting the amines of methyl isocytosine and the epoxy groups of poly (ethylene glycol diglycidyl ether). This supramolecular polymer was complexed with metal salt, that is potassium iodide, to produce polymer electrolytes, and their physical properties, specific interactions, and conductivity behavior were investigated. The ionic conductivity of polymer electrolytes continuously increased with increasing salt concentration up to 0.4 of salt weight fraction, presenting usually high solubility limit of salt in the supramolecular polymer. Wide angle X‐ray scattering data also presented that the metal salt was completely dissolved in the supramolecular polymer up to 0.4 of salt weight fraction. Upon the introduction of metal salt, the mechanical properties of the supramolecular polymer were significantly enhanced by around 10 times and the glass transition temperature of the polymer increased by about 50 °C, as revealed by complex melt viscosities and differential scanning calorimetry. These unusual behaviors of salt solubility and mechanical properties for supramolecular polymer/metal salt complexes were attributed to the strong, additional metal ion coordination to hydrogen bonding sites as well as ether oxygens of polymer matrix, as supported by FTIR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3181–3188, 2007  相似文献   

4.
Weakly cross-linked temperature sensitive imprinted polymer hydrogels that recognize L-pyroglutamic acid (Pga) molecules via multiple-point hydrogen bonding were designed and synthesized. The amount of adsorption for Pga in imprinted hydrogels is 3-4 times higher than that in non-imprinted hydrogels. The selectivity test of imprinted polymer gels was carried out by using a series of structurally related compounds Pga, pyrrolidine, 2-pyrrolidone, L-proline as substrates. The results show that imprinted polymer gels exhibit high selectivity for Pga as compared to all the other tested substrates. The imprinted polymer hydrogels show good temperature sensitivity, special selectivity and reusability, suggesting that the polymer hydrogels would have an enormous potential for application in controlled drug release and separation field.  相似文献   

5.
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.  相似文献   

6.
7.
Engineering functional materials endowed with unprecedented properties require the exploitation of new intermolecular interactions, which can determine the characteristics of the bulk materials. The great potential of Halogen Bonding (XB), namely any noncovalent interaction involving halogens as electron acceptors, in the design of new and high‐value functional materials is now emerging clearly. This Highlight will give a detailed overview on the energetic and geometric features of XB, showing how some of them are quite constant in most of the formed supramolecular complexes (e.g., the angle formed by the covalent and the noncovalent bonds around the halogen atom), while some others depend strictly on the nature of the interacting partners. Then, several specific examples of halogen‐bonded supramolecular architectures, whose structural aspects as well as applications in fields as diverse as enantiomers' separation, crystal engineering, liquid crystals, natural, and synthetic receptors, will be fully described. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: PolymChem 45: 1–15, 2007  相似文献   

8.
9.
We describe the electrochemically controlled hydrogen bonding interactions between the isobutyl flavin/2,6-diferrocenylamidopyridine (2·5) and 9,10-phenanthrenequinone/1-ferrocenyl-3-hexylurea (4·6) dyads. Cyclic and square wave voltammetry studies have shown that the binding efficiencies between these moieties can be electrochemically actuated in non-polar (CH2Cl2 for 2·5) or polar (DMF for 4·6) organic solvents between three distinct states.  相似文献   

10.
The origin of heterogeneity of nucleotide steps geometry in short double helixes is studied theoretically. By using the semiempirical MNDO/PM3 technique, the stability of “propeller‐like” and “step‐like” forms of base H‐pairing is examined in the structure of oligonucleotide duplexes of different types. The influence of end effects on the process of nucleotides packing, as well as the dependence of duplex curvature on the nature of bonded oligonucleotides, are examined. It is concluded that the structural polymorphism of base pairs most likely determines the unique packing of complementary pairs and their flexibility in DNA structure. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

11.
12.
A series of mono- and bifunctional compounds 2-7, based on the ureido pyrimidinone quadruple hydrogen bonding unit, was prepared to study the mode of aggregation of these compounds in the bulk and in solution. Compounds 2-7 exhibit thermotropic liquid crystalline properties, as evidenced by differential scanning calorimetry and optical polarization microscopy. The presence of an ordered hexagonal discotic (D(ho)) phase of 2 a was confirmed by X-ray diffraction on an aligned sample. In chloroform, the bifunctional compounds form cyclic dimers at millimolar concentrations, and these dimers exist in equilibrium with linear species above a critical concentration, which may be from 6 mM to greater than 260 mM, depending on the structure of the spacer. Circular dichroism measurements in chloroform did not show a Cotton effect. Dodecane solutions of compounds 3, 4 b, and 7 b display a Cotton effect at the absorption band of the phenyl-pyrimidinone unit. Amplification of chirality was observed in mixtures of 7 a and 7 b, but not in mixtures of 4 a and 4 b, indicating that 7 a and 7 b form mixed polymeric aggregates with a helical architecture in dodecane solution, whereas 4 a and 4 b do not. The Cotton effect is lost upon increasing the temperature. Half of the helicity is lost at 25 degrees C for 3 and at 60 degrees C for 4 b, suggesting that 3, bearing the shorter spacer, forms less stable columns than 4 b. Compound 7 b loses half of its helicity at 45 degrees C. Compounds 2 b, 5, and 6 do not exhibit helical organization, as evidenced by the absence of Cotton effects.  相似文献   

13.
14.
15.
16.
17.
We have prepared the amidinium-carboxylate salt bridge-based supramolecular polymer gels from random copolymer of n-butyl acrylate and acrylic acid and a linear polyamidine having N,N′-di-substituted acetamidine group in the main chain. The supramolecular polymer gel with equimolar amounts of carboxy and amidine groups shows a high G′ value of 1.6 MPa at 25°C. In contrast, the gel prepared from the carboxy polymer and linear polyethyleneimine instead of the polyamidine shows liquid-like fluidity with a G′ value of 0.01 MPa at 25°C. The robustness of the amidine-based supramolecular polymer gels is attributed to the high stability of the amidinium-carboxylate salt bridge. Replacing the random copolymer with carboxy-terminated telechelic poly(n-butyl acrylate) results in a significant decrease in G′ as well as |η*|, which may arise from the difference in the network structure due to the arrangement of carboxy groups.  相似文献   

18.
19.
Quantum chemical calculations at the second‐order Moeller–Plesset (MP2) level with 6‐311++G(d,p) basis set have been performed on the lithium‐bonded and hydrogen‐bonded systems. The interaction energy, binding distance, bond length, and stretch frequency in these systems have been analyzed to study the nonadditivity of methyl group in the lithium bonding and hydrogen bonding. In the complexes involving with NH3, the introduction of one methyl group into NH3 molecule results in an increase of the strength of lithium bonding and hydrogen bonding. The insertion of two methyl groups into NH3 molecule also leads to an increase of the hydrogen bonding strength but a decrease of the lithium bonding strength relative to that of the first methyl group. The addition of three methyl groups into NH3 molecule causes the strongest hydrogen bonding and the weakest lithium bonding. Although the presence of methyl group has a different influence on the lithium bonding and hydrogen bonding, a negative nonadditivity of methyl group is found in both interactions. The effect of methyl group on the lithium bonding and hydrogen bonding has also been investigated with the natural bond orbital and atoms in molecule analyses. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

20.
Making use of the invariant property of the equilibrium size distribution of the hydrogen bonding clus- ters formed in hydrogen bonding system of AaDd type,the analytical expressions of the free energy in pregel and postgel regimes are obtained.Then the gel free energy and the scaling behavior of the number of hydrogen bonds in gel phase near the critical point are investigated to give the corre- sponding scaling exponents and scaling law.Meanwhile,some properties of intermolecular and in- tramolecular hydrogen bonds in the system,sol and gel phases are discussed.As a result,the explicit relationship between the number of intramolecular hydrogen bonds and hydrogen bonding degree is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号