首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between the microstructure and the fracture behavior of three polymer/clay nanocomposites were studied. Two different polymer matrices were chosen, namely polyamide‐6 and polyethylene (compatibilized with PE‐g‐MA or PE‐g‐PEo), to reach very different clay dispersion states. The microstructure was characterized in terms of polymer crystallinity, orientation of the polymer crystalline lamellae, clay dispersion state, and orientation of the clay tactoids. The mechanical behavior was characterized by tensile tests. The essential work of fracture (EWF) concept was used to determine the fracture behavior of the nanocomposites. Both tensile and EWF tests were performed in two perpendicular directions, namely longitudinal and transversal. It is shown that the fracture behaviors of the matrices mainly depend on the polymer crystalline lamellae orientation. For the nanocomposites, the relationships between the matrix orientation, the clay dispersion states, the values of the EWF parameters (we and βwp), and their anisotropy are discussed. The results show that the lower the average clay tactoid thickness, the lower is the decrease of fracture performance for the nanocomposite and the more consumed energy as longer the path of the crack. Besides, a linear dependence of the anisotropy of the EWF parameters of the nanocomposites on the average clay aspect ratio is found. The more exfoliated the structure is, the less pronounced the anisotropy of the EWF parameters. Interestingly, it is thought that the average clay aspect ratio is the parameter representing the clay dispersion state that governs the fracture anisotropy of the nanocomposites (as the elastic properties determined by tensile tests). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1820–1836, 2008  相似文献   

2.
A unique set of double-edge notched tension specimens of a Polyethylene Terephthalate Glycol-modified film was tested in mode I, plane stress. The load was registered on a universal testing machine. The displacements, ligament lengths, and video frames were recorded by a Digital Image Correlation system. With these registered data, the essential work of fracture, J-integral, and crack tip opening displacement (CTOD) fracture concepts have been applied. The onset of crack initiation was through a complete yielded ligament. The analysis showed that the intrinsic specific work of fracture, we, is the specific energy just up to crack initiation, which is an initiation value. we has both a coincident value and the same conceptual meaning as Jo, the J-integral at the onset of crack initiation. The relationship between Jo and CTOD is also determined. The influence on the notch quality when the specimens were sharpened by two different procedures, femtosecond laser ablation and razor blade sliding, was analysed in detail.  相似文献   

3.
Lignocellulosic fibers, such as henequen, sisal, coconut fiber (coir), jute, palm and bamboo, have been used as reinforcement materials for different thermosetting and thermoplastic resins because of their attractive physical and mechanical properties. Unlike the traditional engineering fibers, e.g. glass and carbon fibers, and mineral fillers, these lignocellulosic fibers are able to impart certain benefits such as low density, less machine wear, no health hazards, and a high degree of flexibility to the composite. The last attribute is especially true because these lignocellulosic fibers will bend rather than fracture, like glass fibers do, during processing of the composite. The mechanical properties and fracture behavior of a natural fiber reinforced polymer composite depend, not only on the properties of constituents, but also on the properties of the region surrounding the fiber, known as the interphase, where the stress transfer takes place. Moreover, the tailoring of the interphase by means of surface treatments, and carefully characterizing it, gives a better understanding of the performance of natural-fiber reinforced composites. The fracture toughness resulting from the use of natural fibers as reinforcing materials is quite different between ductile and brittle polymers, as well as between quasi-static and impact loading rates. The aim of this paper is to study the effect of the interphase properties, resulting from well controlled surface treatment of the natural fibers, on the behavior of a ductile polymer matrix composite under quasi-static loading using the essential work of fracture criteria. Specifically, the contribution of each of the different fiber-matrix interfacial adhesion levels towards the dissipation energy were analyzed and discussed. In the case of the plastic work βwp, there seems to be a synergy between the frictional and chemical interactions observed for both, low and high strain rates. The nonlinear mechanical behavior of the natural fiber under combined tensile-shear loads has also an effect on the fracture behavior of the composite. Additionally, different fiber surface treatments change the microstructural nature of the natural fiber, further affecting its behavior, particularly under high loading rates.  相似文献   

4.
In this study, a series of monodispersed poly(L-lactide)(PLLA) were synthesized by the ring-opening polymerization with Schiff base aluminum catalyst, and the effects of the number-average molecular weight(Mn) on the crystallization and melting behaviors of PLLA were investigated by differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WAXD). The total crystallization rate of PLLA was Mn-dependent, which reached the maximum value for PLLA with Mn of 18.6 kg/mol. In addition, when Mn of PLLA was 18.6 kg/mol, the melting enthalpy(ΔHm) showed a maximum value(87.1 J/g), which was the highest reported value till now. The critical temperature for change of crystal formation from ?-form to ?-form crystals increased in the isothermal crystallization process with Mn increasing. In the reheating procedure, high-Mn PLLA demonstrated a small exothermal peak prior to the dominant melting peak, corresponding to crystal transition from ?- to ?-form, but low-Mn PLLA didn't show the peak of crystal transition. These different crystallization and melting behaviors were attributed to the different chain mobility of PLLA with different Mn.  相似文献   

5.
Polypropylene (PP)/Montmorillonite (MMT) nanoclay based composite was prepared by melt compounding with maleic anhydride grafted polypropylene (MA-g-PP) as a compatibilizer in a twin-screw extruder, and the test specimens were injection molded. Mechanical properties such as tensile modulus, flexural modulus, yield strength and maximum percent strains were measured for pure PP and PP based nanocomposite to establish the effect of clay platelet reinforcement. The fracture properties were measured by using the essential work of fracture (EWF) method. PP/clay nanocomposite shows 25% improvement in specific EWF compared to pure PP. The variation of EWF parameters with loading rate is discussed, whilst the mechanisms of fracture are considered in a subsequent paper.  相似文献   

6.
The fracture of a ductile polymer film, a heterophase ethylene-propylene block copolymer, has been studied, combining a range of characterisation methods in an attempt to provide a better understanding of the intricate details that play an important role in the repeatability and reproducibility of the essential work of fracture test. The experimental factors that have a strong influence on the resulting parameters are clearly explained, with particular attention to the effect of the quality of the notches, the non-collinearity of the two edge notches in double edge notched tension specimens, and the lack of alignment of the specimen with the load axis once it is mounted on the load train. Furthermore, the influence of these experimental factors on the registered stress-displacement curves is also studied, and a criterion and the method for separating non-valid specimens are established.  相似文献   

7.
闫寿科 《高分子科学》2014,32(9):1199-1209
The crystallization behavior of PEOs with molecular weight of 1 Ok and 200k as well as their blends was studied in details. The results show that the lower molecular weight PEO crystallizes with faster crystallization rate as judged from a shorter time for completing the crystallization. On the other hand, the higher molecular weight PEO crystallizes at relatively higher temperature, indicating an early start of crystallization compared with the lower molecular weight one. The blends of these two PEOs with different blend ratios always cocrystallize during the cooling processes. It is confirmed that mixing of the 10k PEO with the 200k one is in favor of the crystallization of the system. This is not only demonstrated by the early start of the crystallization at higher crystallization temperature, and also a faster crystal growth of the blend with respect to the 200k PEO. The crystallization of the blends at higher temperature is caused by an early start of nucleation and an increment of nucleus density. This may originate from the density fluctuation of the blend and a reduction in energy barrier for nucleation. Moreover, it is found that the crystallinity of the 1 Ok PEO rich blends increases with increasing concentration of the 10k PEO. This is caused by the solvent effect of the 10k PEO toward the 200k PEO. On the other hand, the crystallinity of the 30/70 (10k/200k) PEO blend is decreased a little bit. This may be a balanced result of the improved crystallization of the 200k PEO at the expense of the high crystallization ability of the 1 Ok PEO.  相似文献   

8.
Polycarbonate (PC), a ductile polymer, has been found by both linear elastic fracture mechanics and impact tests to present a ductile-brittle transition, which depends on notched specimen thickness, test speed and gamma irradiation. Owing to large amounts of plastic deformation, fracture toughness measurements by these test methods are not precise. In the present communication, a better method, the Essential Work of Fracture (EWF), to assess the fracture characteristics in plane state of stress was for the first time used to evaluate the fracture toughness of PC sheets subjected to gamma irradiation dose. Three-points bend tests of sharp pre-cracked specimens with different ligament lengths were 340 kGy gamma irradiated. EWF results showed that the total fracture work increased linearly with length for both non-irradiated and gamma irradiated conditions. A significant decrease in EWF fracture toughness was associated with brittleness promoted by gamma irradiation. This brittleness was also confirmed by macro and microscopy (SEM) evidence.  相似文献   

9.
Fracture behaviour of polyethylene (PE)/Mg-Al layered double hydroxide (LDH) based nanocomposites has been studied by essential work of fracture (EWF) approach. Transmission electron microscopy (TEM and X-ray diffraction (XRD) analysis have been used to investigate the morphological features of these nanocomposites. A maximum in the non-essential work of fracture was observed at 5 wt.% LDH demonstrating enhanced resistance to crack propagation compared to pure PE. Morphological analyses of the nanocomposites show that the dispersed LDH platelets are partially exfoliated and also forms clusters with polymer chains remaining entrapped within. Rheological analyses show that the typical low-frequency Newtonian flow behaviour, as observed in unfilled polymer, shifts to shear-thinning behaviour with increasing LDH concentration. At 5 wt.% LDH a ductile-to-brittle transition has been observed. Fracture surface investigation by SEM reveals the arresting of the plastic crack growth by the LDH particle clusters, which is more significant at 5 wt.% LDH content. At higher LDH concentrations, the number of such particle clusters increases causing decrease in the average distance between them. As a result large-scale plastic deformation of the matrix at higher LDH concentration is effectively arrested favouring small strain failure and this in turn reaffirms the possible existence of a ductile-to-brittle transition. The study in general reveals that the resistance against crack initiation (essential work of fracture: EWF) and crack propagation (non-essential work of fracture: βwp) in these nanocomposites are structurally correlated with the matrix behaviour and the morphology (state of LDH particle dispersion) respectively.  相似文献   

10.
The structure of a fully aromatic thermotropic liquid crystalline (LC) copolyester poly-[(phenyl-p-phenylene)-co-(terephthalate)-co-(p-hydroxybenzoate)] (PES) prepared from terephthalic acid, phenylhydroquinone, andp-hydroxybenzoic acid at a molar ratio of 45/45/10, respectively, was studied at ambient and elevated temperatures by means of x-ray diffraction and differential scanning calorimetry as a function of molecular weight. On heating of PES fibers with fixed ends an irreversible phase separation process takes place above the glass transition point and two different crystalline phases are formed. A model is proposed where the phases are assumed to contain the constituents of the statistical copolymer in different amounts. The relative volume fraction of the two crystalline modifications depends on the molecular weight of the investigated fibers. At higher temperatures the melting of the two crystalline phases and their transition to a LC nematic mesophase is observed.  相似文献   

11.
Binary blends of polypropylene (PP)/recycled poly(ethylene terephthalate) (r-PET), r-PET/maleic anhydride grafted PP (PP-g-MA), r-PET/glycidyl methacrylate grafted PP (PP-g-GMA), and ternary blends of PP/r-PET (80/20 w/w) compatibilized with various amounts (2-10 wt%) of PP-g-MA or PP-g-GMA were prepared on a twin-screw extruder. The non-isothermal crystallization and melting behavior, and the crystallization morphology were investigated by DSC and POM. The chemical reactions of r-PET with PP-g-MA and PP-g-GMA were characterized by FT-IR. DSC results show that the crystallization peak temperatures of r-PET and PP increased when blending them together, due to the heterogeneous nucleation effect on each other. The of r-PET increased with increasing the content of PP-g-MA while slightly influenced by the content of PP-g-GMA in the binary blends of r-PET with grafted PP, implying different reactivity of r-PET with PP-g-MA and PP-g-GMA. The of PP in the ternary blends retained or slightly decreased, dependent on the compatibilizers and their contents. The melting peak temperature of r-PET in PP/r-PET blends compatibilized by PP-g-MA was lower than that of compatibilized by PP-g-GMA, indicating that PP-g-MA had stronger reactivity towards r-PET compared to PP-g-GMA. The crystallization and melting behavior of blends was influenced by the pre-melting temperature, especially the melting behavior of r-PET in the blends. The crystallization behavior of PP in the blends was also evaluated by Mo’s method. POM confirmed the heterogeneous nucleation effect of r-PET on PP.  相似文献   

12.
Melting and crystallization behavior of polytetrafluoroethylene as polymerized in emulsion and suspension is shown to depend on molecular weight. DSC heating curves for virgin PTFE with low molecular weight below 3 × 105 have a single peak, whereas curves for higher molecular weight samples have double peaks. With increasing heating rate the areas of higher melting peaks become larger than the lower melting peaks. The morphology of polymer exhibiting double melting peaks is mainly folded ribbons or granular particles. The phenomenon of double melting is explained on the basis of two different crystalline states which correspond to the “fold regions” and the “linear segments” in a folded ribbon. The melting temperature of virgin PTFE is almost constant at ca. 330°C for molecular weights below 1 × 106, and rises as the molecular weight increases above 1 × 106. The heat of melting of virgin PTFE is nearly independent of molecular weight. On the basis of these results, we propose a model for melting and crystallization of low and high molecular weight PTFE and for the crystal structure.  相似文献   

13.
Liquid crystalline triblock copolymers with LC inner block and amorphous outer blocks have been synthesized by “living” anionic polymerization and investigated using DSC, TEM, and small-angle x-ray diffraction. All samples of poly[styrene-block-2-(3-cholesteryloxycarbonyloxy) ethyl methacrylate-block-styrene] (PS-b-PChEMA-b-PS) show liquid crystalline behavior and phase separation between the blocks. Compared to triblock copolymers with PS inner block (PChEMA-b-PS-b-PChEMA) and diblock copolymers (PS-b-PChEMA) the LC block copolymers with PS outer blocks have the same properties. The LC behavior and the morphology do not depend on the block arrangement; they are only influenced by the volume fractions of the blocks. Those samples in which the liquid crystalline subphase is not continuous (spheres) only a nematic phase was found, whereas in all samples with a continuous liquid crystalline subphase, the smectic A phase of the homopolymer was observed. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Polystyrene-ethylene copolymers were prepared by sequential polymerization of styrene and ethylene. The crystallization behaviors of the PSE copolymers were studied by polarized light microscopy, wide angle X-ray diffraction and differential scanning calorimeter. The spherulitic growth rates have a tendency of reduction with increasing of styrene content. The growth rates, the melting points and onset temperatures of melting peaks are lower than those of pure polyethylene. The orthorhombic lattice parameters of relatively low styrene content are slightly larger than those in pure PE and the X-ray diffraction traces are no more typically orthorhombic when the styrene content is relatively high. The DSC analyses on the annealed fractions extracted with temperature gradation elution fractionation revealed that the components in the copolymer could be classified into three types based on the thermal behaviors: styrene ethylene random copolymer, ethylene-predominant copolymer and multi-ethylene segment copolymer.  相似文献   

15.
冯嘉春 《高分子科学》2016,34(3):344-358
The introduction of concept of the three domains of isotactic polypropylene (iPP) by Wittmann and Lotz et al. is an important advance in understanding the influence of the melt structures on the crystallization behaviors and consequent properties. To further understand the physical nature of the melt structures, the crystalline structures of iPP after thermal treatment in the three domains are systematically investigated. It is found that after treated at different domains the crystal morphologies, including the sizes and birefringence of spherulitic, the proportion of radial and tangential lamellae, etc., have distinctly different features. Our study reveals that the “nuclei” at domain II compose of locally ordered chains and the induced memory effect could not be erased under annealing treatment, while the “nuclei” at domain III compose of crystal fragments, which will aggregate under annealing process. Based on our results, highly schematic diagrams are proposed to illustrate the probable physical characteristics of the melt structures at the three different domains.  相似文献   

16.
17.
In this study, the aggregation morphology, tensile behavior, and morphology evolution during the tensile test of two isotactic polypropylene (iPP) samples with similar molecular weight and average isotacticity but different uniformities of stereo-defect distribution are investigated by differential scanning calorimetry (DSC), two-dimensional wide angle X-ray diffraction (2D-WAXD), and scanning electronic microscopy (SEM). The results revealed that the uniformity of stereo-defect distribution of iPP determines the crystalline structure and aggregation morphology, and further influences the tensile behavior and morphology evolution during the tensile test. For PP-A with less uniform stereo-defect distribution, its ability of crystallization is stronger compared with PP-B, resulting in smaller spherulite sizes, higher melting point and degree of crystallinity, and narrower distribution of lamellar thickness of the compression molding specimens. During the tensile test, mainly the inter-spherulite deformation takes place at the early stage for deformation, which further results in drastic deformation of lamellar and high degree of reorientation at the strain increases, exhibiting higher yield strength and elastic modulus, and lower elongation at break compared with PP-B; for PP-B with more uniform stereo-defect distribution, larger spherulite sizes, lower melting point and degree of crystallinity in its compression molding sample are observed. During the tensile test, intra-spherulite deformation mainly takes place, which can disperse the tensile stress more uniformly. As the strain increases, lower degree of crystalline destruction and reorientation of the crystallites take place. The yield strength and elastic modulus of PP-B is lower than PP-A, and its elongation at break is higher.  相似文献   

18.
The conversion and residence time were investigated during the bulk polymerization of styrene in a twin screw extruder. It was found that polymerization mainly occurred in the zone between 400 and 1000 mm along the screw axis in the extruder, corresponding to the residence time of the reactants ranging from 1 to 4 min in the extruder. Furthermore, the processing conditions (feed rate, screw rotation rate) and average molecular weight of the polymer have a great effect on the residence time. Based on dimensionless analysis, a model of the residence time has been built‐up, which has been confirmed by the results of realistic measurements. A kinetic model of the polymerization has also been established under the assumption that the screw extruder can be regarded as an ideal plug flow reactor. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of low concentrations of dicumyl peroxide (DCP) on the molecular weight of a linear low density polyethylene (LLDPE) during a reactive extrusion process was studied. The experiments were arranged in a two level factorial design in order to evaluate the effect of peroxide concentration (X2), temperature zones (X1) and screw rpm (X3) on the crosslinking of LLDPE. The melt flow index (MFI) was used as a response variable. It was verified that the thermal properties, crystalline melting temperature (Tm), the heat of fusion (ΔHmelt) and the degree of crystallinity (X%) tend to decrease with increase of the peroxide concentration. The crystallization temperature (Tc) increased up to 0.5% w/w peroxide, whereafter the level stays almost constant. In this study, it was also verified through the dynamic rheological data that there was an increase of the complex viscosity and the complex modulus (G′ and G″). These results can be an indication that there was an increase of the polymer average molecular weight (Mw) and polydispersity (MWD). The gel content of the samples, however, indicated that a three-dimensional network was negligible in the experimental conditions used.  相似文献   

20.
The effect of temperature on fracture behaviour of isotactic polypropylene films has been studied on two PP samples of molecular weights MW=270 kg mol−1 and MW=150 kg mol−1, using the Essential Work of Fracture method. Two ductile-brittle transitions as a function of temperature are in evidence at respectively 10 and 60 °C. The former transition occurs for the highest molecular weight and the latter one for the lowest molecular weight.

Three processes are involved in the temperature effect on PP toughness: (1) The decrease of yield stress with temperature according to Eyring’s law; (2) The role of cooperative motions in the amorphous phase: the ductile-brittle transition of the sample of highest MW corresponds to the glass transition; and (3) The role of the mobility of the crystalline phase: the ductile-brittle transition of the sample of lowest MW corresponds to the C transition.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号