首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of difunctional fluorene-based benzoxazine monomers were synthesized from the reaction of 9,9-bis-(4-hydroxyphenyl)-fluorene with formaldehyde and primary amines including aniline, o-toluidine, n-butylamine, and n-octylamine. Their chemical structures were confirmed by FT-IR, 1H and 13C NMR analyses. The curing behaviors of the precursors were monitored by differential scanning calorimetry (DSC) and FT-IR. The thermal properties of cured polymers were evaluated with DSC and thermogravimetric analysis (TGA). The fluorene-based polybenzoxazines show the typical curing characteristic of oxazine ring-opening for difunctional benzoxazines centred at 231-250 °C, and remarkably higher glass transition temperature and better thermal stability ascribed to the high rigidity, high aromatic content, and intermolecular and intramolecular hydrogen bonding. The thermal decomposition temperature and char yield of aromatic amine-fluorene-based polybenzoxazines are much higher than those of aliphatic amine-based polybenzoxazines.  相似文献   

2.
A new class of benzoxazine-containing monomers, namely bis(benzoxazine-maleimide)s, has been prepared from hydroxyphenylmaleimide, paraformaldehyde and various diamines. This series of difunctional maleimide benzoxazines has been difficult to synthesize using previously reported benzoxazine synthesis conditions. The structures of the monomers are confirmed by Fourier transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. Polymerization behavior of the monomers is studied by differential scanning calorimetry (DSC), showing two exotherms at different temperature ranges. The 1st exotherm is due to the combination of benzoxazine ring-opening polymerization and addition-polymerization of bismaleimide. FTIR is also used to investigate the polymerization process. The dynamic mechanical analyses (DMA) of the obtained polymers reveal the glass-transition temperatures as high as 289-307 °C. Thermogravimetric analyses (TGA) show the 5% weight loss temperatures ranging from 374 to 383 °C with char yield ranging from 55% to 62% at 800 °C in N2 atmosphere.  相似文献   

3.
Using 31P NMR spectroscopy after phosphorylation, different phenols are easily discriminated. Proposed phenolic model compounds from benzoxazine reaction/polymerization are phosphorylated with 2-chloro-1,3,2-dioxaphospholane directly in an NMR tube. The dimer and oligomer structure of benzoxazine is different from that of monomer, that is, the breaking of the oxazine ring upon polymerization results in the formation of Mannich bridge structure linking phenolic groups together. Different electronic environment in the phosphorus derivatives of the methylamine-based benzoxazine model dimer and oligomers allows comparison of these 31P NMR spectra with the 31P-NMR spectra of the compounds from traditional benzoxazine polymerization provides useful end group information. Phenolic functional groups in benzoxazine dimer and oligomers, e.g. phenolic end groups and phenolic groups on the backbone, are studied.  相似文献   

4.
A series of novel type bisphthalonitriles with different molecular weight main-chain polybenzoxazines as linkages have been successfully synthesized using 4, 4′-diaminodiphenyl methane, paraformaldehyde, bisphenol A and 4-nitrophthalonitrile as initial materials. The structures were characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR). The formation of benzoxazine and the existence of nitrile groups were confirmed by the absorbance at 950cm?1 of benzene attached with oxazine ring and 2231 cm?1 of nitrile groups. The characteristic resonance peaks observed at about 4.52 (C-CH2-N) and 5.28 ppm (N-CH2-O) also determined the structure of benzoxazine ring. The curing behaviors were monitored by differential scanning calorimetry (DSC) and FT-IR. Two-stage polymerization mechanisms were observed according to the ring-opening of benzoxazine and the polymerization of nitrile groups catalyzed by phenolic hydroxyl groups, which generated during the curing reaction of benzoxazine. The polymerization of these bisphthalonitriles exhibited self-promoted curing behaviors. The completion of polymerization was proved by the disappearance of the band located at 950 cm?1 in FT-IR. Thermogravimetric analysis (TGA) was used to investigate the thermal stability, and the results showed that the cured polymers achieved extremely high char yield from 61.1% up to 74.2% at 800°C under nitrogen and exhibited increasing decomposition temperature as the contents of phthalonitrile groups increased, which indicated that the polymerization of phthalonitriles could improve the thermal stability.  相似文献   

5.
A novel bisphenol-AP-aniline-based benzoxazine monomer (B-AP-a) was synthesized from the reaction of 4,4′-(1-phenylethylidene) bisphenol (bisphenol-AP) with formaldehyde and aniline. The chemical structures were identified by FT-IR, 1H and 13C NMR analyses. The polymerization behavior of the monomer and the types of hydrogen bonding species were monitored by differential scanning calorimetry (DSC) and FT-IR. The curing kinetics was studied by isothermal DSC and the isothermal kinetic parameters were determined. The thermal properties of cured benzoxazine were measured by DSC and thermogravimetric analysis (TGA). The bisphenol-AP-aniline-based polybenzoxazine (poly(B-AP-a)) exhibited higher glass transition temperature (Tg) and better thermal stability than corresponding bisphenol A-aniline-based polybenzoxazines (poly(BA-a)). The Tg value of poly(B-AP-a) is 171 °C. The temperatures corresponding to 5% and 10% weight loss is 317 and 347 °C, respectively, and the char yield is 42.2% at 800 °C. The isothermal curing behavior of B-AP-a displayed autocatalysis and diffusion control characteristics. The modified autocatalytic model showed good agreement with experimental results.  相似文献   

6.
Low-melting bisphthalonitrile oligomers with variable length of aromatic ether nitrile linkages (nPEN-BAPh) was firstly synthesized and the length of the linkages (n) was controlled by mole ratio of 2, 6-dichlorobenzonitrile and bisphenol A. The oligomers were characterized by FTIR and NMR spectra, and detailed study showed that the linkages were constructed in the backbone of nPEN-BAPh. The FTIR showed, with the curing reaction progressed, the characteristic peak of nitrile at 2230 cm−1 disappeared while the characteristic peak of phthalocyanine ring at 3290, 1010 cm−1 and triazine ring at 1360 cm1 appeared. The melting and polymerization temperature of the oligomers was around 60 °C and 220 °C, respectively. So a large processing window was obtained. The char yields of completely cured materials were above 65% at 800 °C in nitrogen and over 70% at 600 °C in air. All materials exhibited excellent thermal and thermo-oxidative stability.  相似文献   

7.
Thiophenol and p‐nitrothiophenol were evaluated as promoters for the ring opening polymerization of benzoxazine. The ring‐opening polymerization of p‐cresol type monofunctional N‐phenyl benzoxazine 1a with 10 mol % of thiophenols proceeded at 150 °C, leading to the high conversion of 1a more than 95% within 5 h, whereas the polymerization of 1a without thiophenols did not proceed under the same conditions. The promotion effect of the thiophenols on curing of bisphenol‐A type N‐phenyl benzoxazine 1b was also investigated. In the differential scanning calorimetric (DSC) analysis of the polymerization of 1b at 150 °C without using any promoters, an exothermic peak attributable to the ring‐opening reaction of benzoxazine was observed after 8 h. In contrast, in the DSC analysis of the polymerization of 1b with addition 20 mol % of p‐nitrothiophenol, an exothermic peak was observed within 2 h, to clarify the significant promoting effect of p‐nitrothiophenol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2523–2527  相似文献   

8.
A bis benzoxazine monomer with allyl groups viz: 2,2′-bis (8-allyl-3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl) propane (Bz-allyl) was synthesized via a solventless method from 2,2′diallyl bisphenol-A, paraformaldehyde and aniline. The chemical structure of Bz-allyl was confirmed by FTIR, 1H NMR and 13C NMR analyses. The monomer manifested a two-stage thermal polymerisation pattern. The first stage was attributed to the polymerisation of the allyl groups and the second to the ring - opening polymerisation of benzoxazine moiety. The polymerisation profile was investigated with DSC, FT-IR, TGA and pyrolysis-GC techniques. A polymerisation mechanism involving the electrophilic addition of the propagating iminium cation on the aniline ring in lieu of the activated sites of bisphenol-A, (which are blocked by allyl and alkyl substituents) was proposed. Additional cross-linking was provided by thermal addition polymerization of allyl groups. As a result of altered cross-linking via the aniline moiety and the additional cross-linking via allyl groups, the cured polymer exhibited a Tg of ca. 300 °C and high crosslink density. The thermal stability of this polymer was also substantially higher vis-à-vis that of the bisphenol-A based polybenzoxazine. The work focuses on the manipulation of benzoxazine monomer structure to alter the ring-opening polymerisation mechanism and cross-linking to derive polybenzoxazine with improved properties.  相似文献   

9.
The Mannich reaction is detailed, which was carried out on benzoxazine dimers under various conditions, that is, temperature, reaction time, and solvents. Against our expectation, in any condition, instead of generating a disubstitution oxazine compound, the reaction gives a product with only a single oxazine ring, a mono-oxazine benzoxazine dimer, as characterized by FT-IR, 1H NMR, 13C NMR, 2D-NMR (1H-1H COSY, 1H-13C HMQC, and 1H-13C HMBC), and EA. The asymmetrical reaction is found to be based on the original structure of the benzoxazine dimer which has two phenol rings in a different stability as clarified by X-ray structure analysis of the single crystal. All types of benzoxazine dimers indicate the specific structure with a pair of inter- and intramolecular hydrogen bonds. The bond distance indicates that the intramolecular hydrogen bonding is very strong, while the packing structure emphasizes the high stability of the dimer unit and implies the deactivation of one phenol ring in the benzoxazine dimer. In this contribution, we demonstrate one of the quite rare examples, showing how the stereostructure of the reactant molecule is an important factor to control the reaction and give an asymmetric product which we never expected when considering only the chemical formula.  相似文献   

10.
In this study, the curing kinetics of polyfunctional benzoxazine resins based on arylamine, i.e. aniline and 3,5-xylidine, designated as BA-a and BA-35x, respectively, were investigated. Non-isothermal differential scanning calorimetry (DSC) at different heating rates is used to determine the kinetic parameters and the kinetic models of the curing processes of the arylamine-based polyfunctional benzoxazine resins were proposed. Kissinger, Ozawa, Friedman, and Flynn-Wall-Ozawa methods were utilized to determine the kinetic parameters of the curing reaction. BA-a resin shows only one dominant autocatalytic curing process with the average activation energy of 81-85 kJ mol−1, whereas BA-35x exhibits two dominant curing processes signified by the clear split of the curing exotherms. The average activation energies of low-temperature curing (reaction (1)) and high-temperature curing (reaction (2)) were found to be 81-87 and 111-113 kJ mol−1, respectively. The reaction (1) is found to be autocatalytic in nature, while the reaction (2) exhibits nth-order curing kinetics. In addition, the predicted curves from our kinetic models fit well with the non-isothermal DSC thermogram.  相似文献   

11.
2-Methoxy ethyl acrylate (MEA), a functional monomer was homopolymerized using atom transfer radical polymerization (ATRP) technique with methyl 2-bromopropionate (MBP) as initiator and CuBr/N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system; polymerization was conducted in bulk at 60 °C and livingness was established by chain extension reaction. The kinetics as well as molecular weight distribution data indicated towards the controlled nature of polymerization. The initiator efficiency and the effect of initiator concentration on the rate of polymerization were investigated. The polymerization remained well-controlled even at low catalyst concentration of 10% relative to initiator. The influence of different solvents, viz. ethylene carbonate and toluene on the polymerization was investigated. End-group analysis for the determination of high degree of functionality of PMEA was determined with the help of 13C{1H} NMR spectra. Chain extension experiment was conducted with PMEA macroinitiator for ATRP of acrylonitrile (AN) in ethylene carbonate at 70 °C using CuCl/bpy as catalyst system. The composition of individual blocks in PMEA-b-PAN copolymers was determined using 1H NMR spectra.  相似文献   

12.
The stabilization modification of the halogen end groups of polystyrene prepared by atom transfer radical polymerization (ATRP) has been attempted. The reaction mechanism adopted is radical chain transfer reaction, and iso-propylbenzene is employed as not only the chain transfer agent but also the solvent. Moreover, Cu0 is used as the acceptor of the transformed halogen atom in some experiments. As evidenced by 1H NMR analysis of the modified products, the halogen end group can really be converted into the much more stable carbon-hydrogen structure. When Cu0 is not used, the conversion of the halogen end groups rises rapidly during the early stage and the increase rate slows down after about 8 h reaction. In view of the influence of reaction temperature on the modification, the conversion increases almost exponentially with temperature in the range of 80-100 °C, and the increase rate slows down at higher temperature. 1H NMR and SEC analyses prove that the modification reaction does not destroy the polymer backbone and the molecular weights remain almost the same as those of the unmodified samples. When Cu0 is introduced, the modification reaction proceeds much rapidly, the conversion of the halogen end groups rises almost linearly at the early stage and the nearly complete (>95%) dehalogenation of the polymeric chains is observed after only 12 h reaction. However, the molecular weights rise and the polydispersities become wider after the modification, which implies that the modification is accompanied with the couple termination of the polystyrene radicals besides chain transfer reaction. Furthermore, the couple termination can be restrained at some lower catalyst concentration. Indeed, the modified polymers show improved thermal stability, the initial weight loss temperatures is increased from 196 °C to 378 °C for the linear polystyrene and from 203 °C to 261 °C for the hyperbranched polystyrene.  相似文献   

13.
A bifunctional benzoxazine monomer, 6,6′‐bis(3‐allyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazinyl) sulfone (BS‐ala), was synthesized from bisphenol‐S, allylamine and formaldehyde via a solution method. The chemical structure of BS‐ala was confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and elemental analysis. The polymerization behavior of BS‐ala was investigated by FTIR, solid‐state 13C NMR, and differential scanning calorimetry (DSC). The oxazine ring opening polymerization is prior to the addition polymerization of allyl group, and the exothermic peaks corresponding to the two reactions appear partially overlapped in the DSC curve. The storage modulus of the resultant polybenzoxazine at 25°C is about 3.9 GPa, and the glass transition temperature is 254°C. The 5% and 10% weight loss temperatures of the polybenzoxazine are about 335°C and 361°C in both air and nitrogen, respectively. The char yield is about 58% at 800°C in nitrogen, whereas almost no residue is remained at 700°C in air. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Benzoxazines containing various additional functional groups have been extensively reported to improve the properties of polybenzoxazines. In this work, a novel amino‐containing benzoxazine (PDETDA‐NH2) was conveniently synthesized from diethyltoluenediamine (DETDA), 2‐hydroxybenzaldehyde, and paraformaldehyde and was used as a hardener for diglycidyl ether of bisphenol‐A (DGEBA). The curing behaviors of PDETDA‐NH2 and PDETDA‐NH2/DGEBA systems were studied by DSC, FT‐IR, and 1H NMR. When curing, PDETDA‐NH2 was firstly polymerized to N,O‐acetal‐type polymer and then rearranged to Mannich‐type polymer at elevated temperature, while the addition reaction between amino and benzoxazine was discouraged because of the steric hindrance of alkyl substituents. During PDETDA‐NH2/DGEBA curing, it was found that the reactions happened in the order of addition polymerization of amino and epoxide, ring‐opening polymerization of benzoxazine, etherification between phenolic hydroxyl of the polymerized benzoxazine, and epoxide. Compared with DETDA cured DGEBA, PDETDA‐NH2 cured DGEBA showed higher modulus, higher char yield, and much lower water uptake.  相似文献   

15.
The ring opening polymerization (ROP) of p-dioxanone using a protected monosaccharide (1,2;3,4-di-O-isopropylidene-α-d-galactopyranose)/Al(OiPr)3 initiator system to yield polydioxanone with a protected monosaccharide end-group is described. The products were synthesized at 60-100 °C and characterized by 1H and 13C NMR, and MALDI-TOF mass spectrometry. Besides the desired polydioxanone functionalised with a monosaccharide end-group, also polydioxanone with an OiPr end-group was formed (20-30%). Systematic studies showed that the polymer yield is a function of the reaction temperature and the reaction time, with higher temperatures (100 °C) leading to lower yields. The average chain length of the polymers is between 7 and 58 repeating units and may be tuned by the monomer to monosaccharide ratio (at constant Al(OiPr)3 intake). A statistical model has been developed that successfully describes the experimentally observed relation between the average chain length of the functionalized polymer and reaction parameters.  相似文献   

16.
Cardanol-based epoxidized novolac vinyl ester resin (CNEVER) was synthesized by reacting cardanol-based epoxidized novolac (CNE) resin and methacrylic acid (MA) (CNE:MA molar ratio 1:0.9) in presence of triphenylphosphine as catalyst at 90 °C. The CNE resin was prepared by the reaction of cardanol-based novolac-type phenolic (CFN) resin and epichlorohydrin, in basic medium, at 120 °C. The CFN resin was synthesized by reacting cardanol (C) and formaldehyde (F) (C/F ratio = 1:0.7) with p-toluene sulphonic acid (PTSA) as catalyst (0.5 wt.%) at 120 °C for 7 h. The resin products were analyzed by Fourier-transform infra-red (FTIR) and nuclear magnetic resonance (NMR) spectroscopic analysis. The number-average molecular weight of the prepared CNEVER was found to be 859 gmol−1 as determined by gel permeation chromatographic (GPC) analysis. The resin was cured by using the mixture of resin, benzoyl peroxide, and styrene at 120 °C. The CNEVER resin was found to be cured in 60 min at 120 °C. Differential scanning calorimetric (DSC) technique was used to investigate the curing behaviour. Single step mass loss in dynamic thermogravimetric (TG) trace of CNEVER was observed. Thermal stability of the vinyl ester sample containing 40 wt.% styrene was the highest amongst all other prepared systems.  相似文献   

17.
Fluoroacrylate copolymer miniemulsion was prepared by miniemulsion polymerization under microwave irradiation. The composition of the copolymer was determined by FTIR, DSC, 1H NMR and 19F NMR. The morphology, size, and size distribution of the latex particles as well as changes in the size during polymerization were characterized by TEM and photon correlation spectroscopy (PCS). The effects of kinetic parameters on the polymerization were evaluated. The particle size of latex underwent almost no change during microwave irradiation polymerization. The diameters of latex particles prepared by microwave irradiation were smaller and more monodispersed than those prepared by conventional heating and the latex had good centrifugal stability. Polymerization under microwave irradiation had a higher reaction rate and higher conversion than traditional heating. By using 10 wt% fluoromonomer, the surface energy of the latex film could be reduced from 27.24 mJ/m2 (latex film of fluorine-free) to 17.59 mJ/m2 and the decomposition temperature increased by 25 °C.  相似文献   

18.
Six bis‐benzoxazines based on bisphenols with different bridging groups, ? C(CH3)2? , ? CH2? , ? O? , ? CO? , ? SO2? , and single bond, were synthesized in toluene. The influence of electronic effects from bridging groups on ring‐forming reaction and thermal ring‐opening polymerization were relatively discussed in detail. Their structures were characterized by high‐performance liquid chromatography, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and elementary analysis. The quantum chemistry parameters of the bisphenols and bis‐benzoxazines were calculated by molecular simulation. The results indicated that the electron‐withdrawing groups inhibited the synthetic reaction by decreasing the charge density of α‐Cs of bisphenols and increasing energy barriers of the synthetic reactions. However, the electron‐withdrawing groups promoted the thermally activated polymerization, which resulted from their activation energy and curing temperature decrease by increasing the bond length and lowering the bond energy of C? O on oxazine rings. Besides, because of stronger electron‐withdrawing sulfone group, there were more arylamine methylene Mannich bridge structure in the polybenzoxazine. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Three new diamines 1,2-di(p-aminophenyloxy)ethylene, 2-(4-aminophenoxy)methyl-5-aminobenzimidazole and 4,4-(aminopheyloxy) phenyl-4-aminobenzamide were synthesized and polymerized with 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP), 4,4′-(hexafluoroisopropyledene)diphthalic anhydride (HF) and 3,4,9,10-perylene tetracarboxylic acid dianhydride (PD) either by one step solution polymerization reaction or by two step procedure. The later includes ring opening poly-addition to give poly(amic acid), followed by cyclodehydration to polyimides with the inherent viscosities 0.62-0.97 dl/g. Majority of polymers are found to be soluble in most of the organic solvents such as DMSO, DMF, DMAc, m-cresol even at room temperature and few becomes soluble on heating. The degradation temperature of the resultant polymers falls in the ranges from 240 °C to 550 °C in nitrogen (with only 10% weight loss). Specific heat capacity at 300 °C ranges from 1.1899 to 5.2541 J g−1 k−1. The maximum degradation temperature ranges from 250 to 620 °C. Tg values of the polyimides ranged from 168 to 254 °C.  相似文献   

20.
A series of hydroxy-containing phthalonitrile model compounds (HPNM) with 1:1 molar ratio of hydroxy group to phthalonitrile unit were successfully synthesized. The molecular structures were identified by FTIR and 1H NMR spectroscopic techniques. The model compounds can be thermally polymerized by duration at 225 °C for various times, even in the absence of curing additives. The thermal properties of the cured products were characterized by thermogravimetric analysis. Char yields (800 °C) of the final cured products were in the range 50-73%. The 5% and 10% weight loss ranged from 320 to 420 °C and 360-490 °C, respectively. Differential scanning calorimetry and FTIR were used to monitor the cure reaction. The results reveal that cure behaviors of the HPNM are closely correlated to their molecular structures, although each HPNM has a 1:1 molar ratio of hydroxy group to phthalonitrile unit. Therefore, the thermal properties of the final cured products depend mainly on the molecular structures of the corresponding HPNM, where differences in HPNM acidities should be considered and may contribute to their different cure behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号