首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recent insights into fractionation during dark respiration and rapid dynamics in isotope signatures of leaf- and ecosystem-respired CO(2) indicate the need for new methods for high time-resolved measurements of the isotopic signature of respired CO(2) (delta(13)C(res)). We present a rapid and simple method to analyse delta(13)C(res) using an in-tube incubation technique and an autosampler for small septum-capped vials. The effect of storage on the delta(18)O and delta(13)C ratios of ambient CO(2) concentrations was tested with different humidity and temperatures. delta(13)C ratios remained stable over 72 h, whereas delta(18)O ratios decreased after 24 h. Storage at 4 degrees C improved the storage time for delta(18)O. Leaves or leaf discs were incubated in the vials, flushed with CO(2)-free air and respired CO(2) was automatically sampled within 5 min on a microGas autosampler interfaced to a GV-Isoprime isotope ratio mass spectrometer. Results were validated by simultaneous on-line gas-exchange measurements of delta(13)C(res) of attached leaves. This method was used to evaluate the short-term (5-60 min) and diurnal dynamics of delta(13)C(res) in an evergreen oak (Quercus ilex) and a herb (Tolpis barbata). An immediate depletion of 2-4 per thousand from the initial delta(13)C(res) value occurred during the first 30 min of darkening. Q. ilex exhibited further a substantial diurnal enrichment in delta(13)C(res) of 8 per thousand, followed by a progressive depletion during the night. In contrast, T. barbata did not exhibit a distinct diurnal pattern. This is in accordance with recent theory on fractionation in metabolic pathways and may be related to the different utilisation of the respiratory substrate in the fast-growing herb and the evergreen oak. These data indicate substantial and rapid dynamics (within minutes to hours) in delta(13)C(res), which differed between species and probably the growth status of the plant. The in-tube incubation method enables both high time-resolved analysis and extensive sampling across different organs, species and functional types.  相似文献   

2.
Techniques have been developed to allow on-line simultaneous analysis of concentration and stable isotopic compositions ((13)C and (18)O) of dissolved carbon monoxide (CO) in natural water, using continuous-flow isotope ratio mass spectrometry (CF-IRMS). The analytical system consisted sequentially of a He-sparging bottle of water, a gas dryer, CO(2)-trapping stage using both Ascarite trap and silica-gel packed gas chromatography (GC), on-line oxidation to CO(2) using the Schütze reagent, cryofocusing, GC purification using a capillary column and measurement by CF-IRMS. Each sample analysis takes about 40 minutes. The detection limit with delta(13)C standard deviation of 0.5 per thousand is 300 pmol and that with delta(18)O deviation of 1.0 per thousand is 750 pmol. Analytical blanks associated with these methods are 21+/-9 pmol. The procedures are evaluated through analyses of temporally varying concentration and isotopic compositions of CO in an artificial lake on the university campus. The delta(13)C and delta(18)O values of CO showed wide variation in accordance with diurnal variation of CO concentration, probably due to significant isotopic effects during photochemical production and microbial oxidation of CO in the aquatic environment. The delta(13)C and delta(18)O values of CO should be a useful tool in studies of the mechanism and pathways of CO production and consumption in natural waters.  相似文献   

3.
The measurement of the carbon isotope composition of starch and cellulose still relies on chemical isolation of these water-insoluble plant constituents and subsequent elemental analysis by isotope ratio mass spectrometry (EA/IRMS) of the purified fractions, while delta(13)C values of low-molecular-weight organic compounds are now routinely measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Here we report a simple and reliable method for processing milligram quantities of dried plant material for the analysis of the carbon isotope composition of lipids, soluble sugars, starch and cellulose from the same sample. We evaluated three different starch preparation methods, namely (1) enzymatic hydrolysis by alpha-amylase, (2) solubilization by dimethyl sulfoxide (DMSO) followed by precipitation with ethanol, and (3) partial hydrolysis by HCl followed by precipitation of the resulting dextrins by ethanol. Starch recovery for three commercially available native starches (from potato, rice and wheat) varied from 48 to 81% for the techniques based on precipitation, whereas the enzymatic technique exhibited yields between 99 and 105%. In addition, the DMSO and HCl techniques introduced a significant (13)C fractionation of up to 1.9 per thousand, while the carbon isotope composition of native starches analyzed after enzymatic digestion did not show any significant difference from that of untreated samples. The enzymatic starch preparation method was then incorporated into a protocol for determination of delta(13)C signatures of lipids, soluble carbohydrates, starch and crude cellulose. The procedure is based on methanol/chloroform/water extraction of dried and ground leaf material. After recovery of the chloroform phase (lipid fraction), the methanol/water phase was deionized by ion exchange (soluble carbohydrate fraction) and the pellet treated with heat-stable alpha-amylase (starch fraction). The remaining insoluble material was subjected to solvolysis by diglyme (cellulose fraction). The method was shown to be applicable to foliar tissues of a variety of different plant species (spruce, erect brome, maize and soybean).  相似文献   

4.
In situ (13)C/(12)C isotopic labelling was conducted in field-grown beech (Fagus sylvatica) twigs to study carbon respiration and allocation. This was achieved with a portable gas-exchange open system coupled to an external chamber. This method allowed us to subject leafy twigs to CO(2) with a constant carbon isotope composition (delta(13)C of -51.2 per thousand) in an open system in the field. The labelling was done during the whole light period at two different dates (in June 2002 and October 2003). The delta(13)C values of respiratory metabolites and CO(2) that is subsequently respired during the night were measured. It was found that night-respired CO(2) is not completely labelled (only ca. 58% and 27% of new carbon is found in respired CO(2) immediately after the labelling in June 2002 and October 2003, respectively) and the labelling level progressively disappeared during the next day. It is concluded that the carbon respired by beech leaves after illumination was supplied by a mixture of carbon sources in which current carbohydrates were not the only contributors. In addition, as has been found in herbaceous plants, isotopic data before labelling showed that carbon isotope discrimination favoring the (13)C isotope occurred during the night respiration of beech leaves.  相似文献   

5.
Stable isotope ratios ((13)C/(12)C and (15)N/(14)N) were measured in royal jelly (RJ) samples by isotope ratio mass spectrometry (IRMS) to evaluate authenticity and adulteration. Carbon and nitrogen isotope contents (given as delta values relative to a standard, delta(13)C, delta(15)N) of RJ samples from various European origins and samples from commercial sources were analyzed. Uniform delta(13)C values from -26.7 to -24.9 per thousand were observed for authentic RJ from European origins. Values of delta(15)N ranged from -1.1 to 5.8 per thousand depending on the plant sources of nectars and pollen. High delta(13)C values of several commercial RJ samples from -20.8 to -13.3 per thousand indicated adulteration with high fructose corn syrup (HFCS) as a sugar source. Use of biotechnologically produced yeast powder as protein source for the adulterated samples was assumed as delta(15)N values were lower, as described for C(4) or CAM plant sources. RJ samples from authentic and from adulterated production were distinguished. The rapid and reliable method is suitable for urgent actual requirements in food monitoring.  相似文献   

6.
A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone.  相似文献   

7.
Carbohydrates and proteins are among the most abundant naturally occurring biomolecules and so suitable methods for their reliable stable isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) are required. Due to the non-volatile nature of these compounds they require hydrolytic cleavage to their lower molecular weight subunits and derivatisation prior to GC/C/IRMS analysis. The addition of carbon to the molecules and any kinetic isotopic fractionation associated with derivatisation must be accounted for in order to provide meaningful stable isotope values and estimates of propagated errors. To illustrate these points amino acid trifluoroacetate/isopropyl esters and alditol acetates were prepared from authentic amino acids and monosaccharides, respectively. As predicted from the derivatisation reaction mechanisms, a kinetic isotope effect was observed which precludes direct calculation of delta(13)C values of the amino acids and monosaccharides by simple mass balance equations. This study shows that the kinetic isotope effect associated with derivatisation is both reproducible and robust, thereby allowing the use of correction factors. We show how correction factors can be determined and accurately account for the addition of derivative carbon. As a consequence of the addition of a molar excess of carbon and the existence of a kinetic isotope effect during derivatisation, errors associated with determined delta(13)C values must be assessed. We illustrate how such errors can be quantified (for monosaccharides +/-1.3 per thousand and for amino acids between +/-0.8 per thousand and +/-1.4 per thousand). With the magnitude of the errors for a given delta(13)C value of a monosaccharide or amino acid quantified, it is possible to make reliable interpretations of delta(13)C values, thereby validating the determination of delta(13)C values of amino acids as TFA/IP esters and monosaccharides as alditol acetates.  相似文献   

8.
水体中痕量挥发性有机物单体碳同位素组成分析   总被引:2,自引:0,他引:2  
刘国卿  张干  黄世卿  彭先芝  陈鸿汉 《色谱》2004,22(4):439-441
将固相微萃取(SPME)技术与冷阱富集系统相结合,对水体中痕量挥发性有机物进行了单体碳同位素分析,方法检测限较常规SPME提高了一个数量级。在优化的条件下,对20 μg/L的三氯乙烯/四氯乙烯和10 μg/L的苯/甲苯水溶液进行了单体碳同位素分析,相比于纯溶剂(液相)碳同位素值,顶空(气相)同位素分析误差不超过0.5‰,而样本标准偏差为0.3‰。对某受四氯乙烯污染的北京地下水进行了同位素测定,近污染源点(B408)与远污染源点(B230)四氯乙烯的碳同位素值(δ13C)分别为 -37.8‰和-34.45‰  相似文献   

9.
In the field of isotope ratio mass spectrometry, the introduction of an interface allowing the connection of liquid chromatography (LC) and isotope ratio mass spectrometry (IRMS) has opened a range of new perspectives. The LC interface is based on a chemical oxidation, producing CO2 from organic molecules. While first results were obtained from the analysis of low molecular weight compounds, the application of compound-specific isotope analysis by irm-LC/MS to other molecules, in particular biomolecules, is presented here. The influence of the LC flow rate on the CO2 signal and on the observed delta13C values is demonstrated. The limits of quantification for angiotensin III and for leucine were 100 and 38 pmol, respectively, with a standard deviation of the delta13C values better than 0.4 per thousand. Also, accuracy and precision of delta13C values for elemental analyser-IRMS and flow injection analysis-IRMS (FIA-LC/MS) were compared. For compounds with molecular weights ranging from 131 to 66,390 Da, precision was better than 0.3 per thousand, and accuracy varied from 0.1 to 0.7 per thousand. In a second part of the work, a two-dimensional (2D)-LC method for the separation of 15 underivatised amino acids is demonstrated; the precision of delta13C values for several amino acids by irm-LC/MS was better than 0.3 per thousand at natural abundance. For labelled mixtures, the coefficient of variation was between 1% at 0.07 atom % excess (APE) for threonine and alanine, and around 10% at 0.03 APE for valine and phenylalanine. The application of irm-LC/MS to the determination of the isotopic enrichment of 13C-threonine in an extract of rat colon mucosa demonstrated a precision of 0.5 per thousand, or 0.001 atom %.  相似文献   

10.
We determined grain-scale heterogeneities (from 6 to 88 microg) in the stable carbon and oxygen isotopic compositions (delta(13)C and delta(18)O) of the international standard calcite materials (NBS 19, NBS 18, IAEA-CO-1, and IAEA-CO-8) using a continuous-flow isotope ratio mass spectrometry (CF-IRMS) system that realizes a simultaneous determination of the delta(13)C and the delta(18)O values with standard deviations (S.D.) of less than 0.05 per thousand for CO(2) gas. Based on the S.D. of the delta(13)C and delta(18)O values determined for CO(2) gases evolved from the different grains of the same calcite material, we found that NBS 19, IAEA-CO-1, and IEAE-CO-8 were homogeneous for delta(13)C (less than 0.10 per thousand S.D.), and that only NBS 19 was homogeneous for delta(18)O (less than 0.14 per thousand S.D.). On the level of single grains, we found that both IAEA-CO-1 and IAEA-CO-8 were heterogeneous for delta(18)O (1.46 per thousand and 0.76 per thousand S.D., respectively), and that NBS 18 was heterogeneous for both delta(13)C and delta(18)O (0.34 per thousand and 0.54 per thousand S.D., respectively). Closer inspection of NBS 18 grains revealed that the highly deviated isotopic compositions were limited to the colored grains. By excluding such colored grains, we could also obtain the homogeneous delta(13)C and delta(18)O values (less than 0.18 per thousand and less than 0.16 per thousand S.D., respectively) for NBS 18. We conclude that NBS 19, IAEA-CO-1, or pure grains in NBS 18 are suitable to be used as the standard reference material for delta(13)C, and that either NBS 19 or pure grains in NBS 18 are suitable to be used as the reference material for delta(18)O during the grain-scale isotopic analyses of calcite.  相似文献   

11.
This study investigated the effect of substituting grass silage (C3 photosynthetic plant product) with maize silage (C4 photosynthetic plant product) on the natural abundance carbon (delta13C) and nitrogen (delta15N) stable isotope composition of bovine muscle tissue. Forty-five continental crossbred heifers were assigned to one of three diets consisting of 3 kg of a barley-based concentrate plus grass silage, maize silage or an equal mixture (dry matter basis) of grass silage and maize silage, fed ad libitum, for 167 days. Substitution resulted in less negative delta13C values (P<0.001) in lipid-free muscle and in lipid, and also a lower delta15N (P<0.001) in lipid-free muscle. Feeding of maize silage was clearly reflected in the delta13C of muscle, with each 10% difference in the dietary C4 carbon intake resulting in a 0.9 to 1.0 per thousand shift of delta13C in lipid-free muscle and a 1.0 to 1.2 per thousand in lipid. Minimum detectable mean differences (95% confidence, power 0.80, n=15) in this experiment were about 0.5 per thousand and 1.0 per thousand for delta13C of lipid-free muscle and lipid, respectively, and about 0.5 per thousand for delta15N of lipid-free muscle. The power analysis presented here is useful for estimating minimum isotopic differences that can be detected between any two groups of beef samples with a given number of replicates. It is concluded that carbon stable isotope ratio analysis of meat can be used to quantify C3/C4 dietary constituents in beef production.  相似文献   

12.
Using continuous-flow isotope ratio mass spectrometry, we have developed a new analytical system which enables us to determine the stable carbon isotopic composition of CH3Cl, CH3Br, and C2-C5 saturated hydrocarbons in gas samples even if they contain substantial amounts of unsaturated hydrocarbons, using an I2O5 reagent for their selective subtraction. The analytical precision of the delta13C determinations is better than 0.5 per thousand for >300 pmolC injections and better than 5 per thousand for 20 pmolC injections. Using the system, delta13C values for CH3Cl and CH3Br were found in burning exhaust that contain a substantial quantity of unsaturated hydrocarbons. CH3Cl and CH3Br measured in exhaust from burning rice plants exhibit highly 13C-depleted values of -56.6 +/- 1.3 per thousand and -48.6 +/- 3.9 per thousand, respectively, while saturated hydrocarbons exhibit delta13C values (-26.4 to -28.9 per thousand) that are comparable with the total delta13C value of the parent material (rice plant; -28.0 per thousand). Using the system, we can determine the delta13C values of methyl halides and hydrocarbons in many kinds of gas samples.  相似文献   

13.
Degradation experiments of benzoate by Pseudomonas putida resulted in enzymatic carbon isotope fractionations. However, isotopic temperature effects between experiments at 20 and 30 degrees C were minor. Averages of the last three values of the CO(2) isotopic composition (delta(13)C(CO2(g))) were more negative than the initial benzoate delta(13)C value (-26.2 per thousand Vienna Pee Dee Belenite (VPDB)) by 3.8, 3.4 and 3.2 per thousand at 20, 25 and 30 degrees C, respectively. Although the maximum isotopic temperature difference found was only 0.6 per thousand, more extreme temperature variations may cause larger isotope effects. In order to understand the isotope effects on the total inorganic carbon (TIC), a better measure is to calculate the proportions of the inorganic carbon species (CO(2)(g), CO(2)(aq) and HCO(3)(-)) and to determine their cumulative delta(13)C(TIC). In all three experiments delta(13)C(TIC) was more positive than the initial isotopic composition of the benzoate at a pH of 7. This suggests an uptake of (12)C in the biomass in order to match the carbon balance of these closed system experiments.  相似文献   

14.
Compound-specific isotope analysis using gas chromatography interfaced to isotope ratio mass spectrometry (GC/IRMS) was applied for the determination of delta13C values of the marine halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1). The delta13C value of a lab-made Q1 standard (-34.20 +/- 0.27 per thousand) was depleted in 13C by more than 11 per thousand relative to the residues of Q1 in dolphin blubber from Australia and skua liver from Antarctica. This clarified that the synthesized Q1 was not the source for Q1 in the biota samples. However, two Australian marine mammals showed a large variation in the delta13C value, which, in our experience, was implausible. Since the GC/IRMS system was connected to a conventional ion trap mass spectrometer by a post-column splitter, we were able to closely inspect the peak purity of Q1 in the respective samples. While the mass spectra of Q1 did not indicate any impurity, a fronting peak of PCB 101 was identified in one sample. This interference falsified the delta13C value of the respective sample. Once this sample was excluded, we found that the delta13C values of the remaining samples, i.e. liver of Antarctic brown skua (-21.47 +/- 1.47 per thousand) and blubber of Australian melon-headed whale (-22.80 +/- 0.33 per thousand), were in the same order. The standard deviation for Q1 was larger in the skua samples than in the standard and the whale blubber sample. This was due to lower amounts of skua sample available. It remained unclear if the Q1 residues originate from the same producer and location.  相似文献   

15.
A wet oxidation method for the compound-specific determination of stable carbon isotopes (delta(13)C) of organic acids in the gas and aerosol phase, as well as of water-soluble organic carbon (WSOC), is presented. Sampling of the organic acids was done using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to an ion chromatography (IC) system. The method allows for compound-specific stable carbon isotope analysis by collecting different fractions of organic acids at the end of the IC system using a fraction collector. delta(13)C analyses of organic acids were conducted by oxidizing the organic acids with sodium persulfate at a temperature of 100 degrees C and determining the delta(13)C value of the resulting carbon dioxide (CO(2)) with an isotope ratio mass spectrometer. In addition, analysis of delta(13)C of the WSOC was performed for particulate carbon collected on aerosol filters. The WSOC was extracted from the filters using ultrapure water (MQ water), and the dissolved organic carbon was oxidized to CO(2) using the oxidation method. The wet oxidation method has an accuracy of 0.5 per thousand with a precision of +/-0.4 per thousand and provides a quantitative result for organic carbon with a detection limit of 150 ng of carbon.  相似文献   

16.
The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.  相似文献   

17.
Carbon dioxide respired by soils comes from both autotrophic and heterotrophic respiration. 13C has proved useful in differentiating between these two sources, but requires the collection and analysis of CO2 efflux from the soil. We have developed a novel, open chamber system which allows for the accurate and precise quantification of the delta13C of soil-respired CO2. The chamber was tested using online analyses, by configuring a GasBench II and continuous flow isotope ratio mass spectrometer, to measure the delta13C of the chamber air every 120 s. CO2 of known delta13C value was passed through a column of sand and, using the chamber, the CO2 concentration stabilized rapidly, but 60 min was required before the delta13C value was stable and identical to the cylinder gas (-33.3 per thousand). Changing the chamber CO2 concentration between 200 and 900 micromol.mol(-1) did not affect the measured delta13C of the efflux. Measuring the delta13C of the CO2 efflux from soil cores in the laboratory gave a spread of +/-2 per thousand, attributed to heterogeneity in the soil organic matter and roots. Lateral air movement through dry sand led to a change in the delta13C of the surface efflux of up to 8 per thousand. The chamber was used to measure small transient changes (+/-2 per thousand) in the delta13C of soil-respired CO2 from a peaty podzol after gradual heating from 12 to 35 degrees C over 12 h. Finally, soil-respired CO2 was partitioned in a labelling study and the contribution of autotrophic and heterotrophic respiration to the total efflux determined. Potential applications for the chamber in the study of soil respiration are discussed.  相似文献   

18.
The delta(13)C(VPDB), delta(2)H(VSMOW) and delta(18)O(VSMOW) values of caffeine isolated from Arabica green coffee beans of different geographical origin have been determined by isotope ratio mass spectrometry (IRMS) using elemental analysis (EA) in the "combustion" (C) and "pyrolysis" (P) modes (EA-C/P-IRMS). In total, 45 coffee samples (20 from Central and South America, 16 from Africa, six from Indonesia, and three from Jamaica and Hawaii) were analysed, as well as three reference samples of synthetic caffeine. Validation was performed by excluding isotope discrimination in the course of sample preparation and determining linear dynamic ranges for EA-P-IRMS measurements. The values for caffeine from green coffee ranged from -25.1 to - 29.9 per thousand, -109 to -198 per thousand, and +2.0 to -12.0 per thousand for delta(13)C(VPDB), delta(2)H(VSMOW), and delta(18)O(VSMOW), respectively. Data evaluation by linear discrimination analysis (LDA) and by classification and regression tree (CART) analysis revealed the delta(18)O(VSMOW) values to be highly significant. Use of LDA on the delta(2)H(VSMOW) and delta(18)O(VSMOW) data from coffee of African and Central/South American provenance led to error rates of 5.7% and 7.7% for adaption and cross validation, respectively.  相似文献   

19.
A gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) method is described and validated for measurement of delta(13)C values of the acetate derivatives of urinary etiocholanolone and androsterone. The analysis was performed with only 2 mL of urine. The sample preparation consisted of deconjugation with beta-glucuronidase, solid phase extraction, and derivatization with acetic anhydride and pyridine. The within-assay precision of two quality control (QC) urine samples ranged from 0.5 to 2.1 CV%. The between-assay precision in the same QC urines ranged from 1.7 to 3.4 CV%. Administration of testosterone enanthate to a subject resulted in a 6 per thousand decrease in delta(13)C values from -25 per thousand (baseline) to -31 per thousand. Two weeks after testosterone administration was discontinued, the delta(13)C values remained abnormally low while the urine testosterone/epitestosterone (T/E) ratio returned to less than 6. This relatively simple method is useful for rapidly screening a large number of urine samples, including those with T/E <6.  相似文献   

20.
The stable isotope ratios ((13)C/(12)C, (15)N/(14)N, (18)O/(16)O, D/H) of animal feed and milk were investigated, considering cows stabled in two farms and fed with diets made up of different kinds of C(3) plants and different amounts of maize. Maize was characterised by delta(13)C, delta(18)O and deltaD values significantly higher than those of the C(3) plants, while, for the C(3) plants, Festuca arudinacea had significantly higher content of (13)C and (15)N. The delta(13)C and delta(18)O values of the overall diet and the delta(13)C of milk casein and lipids were shown to be significantly correlated with the percentage of maize in the animal diet. On the other hand, the delta(18)O values of milk water and the delta(18)O, deltaD and delta(15)N values of casein were shown to be only slightly influenced by the amount of maize in the feed, being probably more closely correlated with the geo-climatic and pedological characteristics of the area of origin and with the presence of fresh plant or silage in the ration. The delta(13)C value of casein was shown to be a suitable parameter for evaluating the amount of maize in the diet: each 10% increase in the maize content corresponded to a shift of 0.7 per thousand to 1.0 per thousand in the delta(13)C of casein. A threshold value of -23.5 per thousand for delta(13)C in milk casein, above which it is not possible to exclude the presence of maize in the diet, was suggested. The results obtained could be useful for determining mislabelling of dairy products declared to have been produced by pastured animals or of PDO cheeses with an established amount of maize in the diet and for verifying the unpermitted addition of exogenous components to milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号