首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of five furostanol glycosides (1–5), of which the 26-O-β-D-glucopyranosyl-(25S),5α-furost20(22)-en-12-one-2α,3β,26-triol-3-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (1) was new, from the leaves of Tribulus terrestris L. were established using chemical and NMR spectroscopic methods.  相似文献   

2.
We have isolated from Crimean ivy berries in addition previously known triterpene glycosides — 3-O-α-L-arabinopyranosyl-28-O-[O-α-L-rhamnopyranosyl-(1 → 4)-O-β-D-glycopyranosyl-(1 → 6)-β-D-glucopyranosyl]hederagenin, 3-O-[O-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyl]-28-O-[O-α-L-rhamnopyranosyl-(1 → 4)-O-β-D-glucopyranosyl-(1 → 6)-β-D-glycopyranosyl]hederagenin, the new triterpene glycosides hederoside H2-3-O-[O-β-D-glycopyranosyl-(1 → 2)-β-D-glycopyranosyl-(1 → 2)-β-D-glucopyranosyl]-28-O-[O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl]oleanolic acid- and hederoside I-3-O-[O-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranosyl]-28-O-[O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl]hederagenin. Details of their13C NMR spectra are given. M. V. Frunze Simferopol' State University. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 779–783, November–December, 1990.  相似文献   

3.
A new furostane-type steroidal glycoside and derivative of tigogenin (1) was isolated from aqueous wastes from production of the cardiac drug acetyldigitoxin from leaves of Digitalis ciliata Trautv. (Scrophulariaceae) and characterized. The structure of the glycoside was established using physical constants, chemical transformations, and spectral data as 3-O-β-D-glucopyranosyl-(1→3) [β-D-fucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosyl-(25R)-5α-furostan-3β,22α,26-triol-26-O-β-D-glucopyranoside.  相似文献   

4.
Two new saponins were isolated from an ethanol extract of the whole plants of Lysimachia davuria. The new saponins were respectively characterized as 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-α-L-arabinopyranosyl}-3β,28-dihydroxyolean-12-en-30-oic acid-O-[β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl]-ester (1) and 3-O-{ β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)]-α-L-arabinopyranosyl}-3β,28-dihydroxyolean-12-en-30-oic acid-O-β-D-glucopyranosyl-ester (2). Their structures were determined by 1D, 2D NMR and MS techniques. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 466–468, September–October, 2007.  相似文献   

5.
A new furostanol glycoside, named ophiopogonin J (1), was isolated from the fibrous root of Ophiopogon japonicas. The structure of the compound was established as (25R)-26-[(O-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranosyl)]-20α -hydroxyfurost-5, 22-diene-3-O-α-L-rhamnopyranosyl-(1 → 2)-[β-D-xylopyranosyl(1 → 4)]-β-D-glucopyranoside on the basis of spectroscopic methods, including HR-ESI-MS and 1D and 2D NMR experiments.  相似文献   

6.
Structures of 13 new acetylated triterpene glycosides from leaves of Cussonia paniculata (Araliaceae) were established as 28-O-(2-O-acetyl- and 3-O-acetyl-α-L-rhamnopyranosyl)-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β -D-glucopyranosides of 23-hydroxybetulinic acid (1a and 1b) and hederagenin (2a and 2b), 3-O-α-L-arabinopyranosyl-28-O-(2-O-acetyl- and 3-O-acetyl-a-L-rhamnopyranosyl)-(1→ 4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glycopyranosides of oleanic (3a and 3b) and ursolic (3c and 3d) acids, 3-O-α-L-arabinopyranosyl-28-O-(4-O-acetyl-, 2-O-acetyl-, and 3-O-acetyl-α-L-rhamnopyranosyl)-(1→4)-O-β-D-glucopyranosyl-(1→ 6)-O-β-D-glucopyranosides of hederagenin (4, d5a and 5b), and 3-O-β-D-glucopyranosyl-(1→2)-O-α-L-arabinopyranosyl-28-O-(2-O-acetyl- and 3-O-acetyl-α-L-rhamnopyranosyl)-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D- glucopyranosides of oleanic acid (6a and 6b). The structures of the compounds were established using chemical methods and NMR spectroscopy. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 351–356, July–August, 2005.  相似文献   

7.
The structures of seven triterpene glycosides (1–7), of which the 23-O-acetyl, 28-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester of hederagenin 3-O-β-D-glucopyranosyl-(1→3)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside (2) was new, from the flower buds of Lonicera macranthoides were established using chemical and NMR spectroscopic methods. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 32–34, January–February, 2008.  相似文献   

8.
From a methanolic extract of the skins of the bulbs ofAllium giganteum Rgl, a new steroid glycoside has been isolated — aginoside, which is (25R)-5α-spirostan-2α, 3β, 6β-triol 3-0-{[0-β-D-xylopyranosyl-(1→3)-]-[0-β-D-glucopyranosyl-(1→2)]-0-β-D-glucopyranosyl-(1→4)-0-β-D-galactopyranoside}.  相似文献   

9.
Thirteen known glycosides of hederagenin and oleanolic acid and the three new triterpene glycosides of oleanolic acid-28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester 3-O-β-D-glucopyranosyl-(1→4)-O-β-D-xylopyranosyl-(1→ 3)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside of oleanolic acid and the 28-O-α-L-rhamnopyranosyl-(1→4)-O-6-O-acetyl-β-D-glucopyranosyl-(1→ 6)-O-β-D-glucopyranosyl esters 3-O-β-D-xylopyranosyl-(1→3)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside of oleanolic acid and 3-O-β-D-glucopyranosyl-(1→4)-O-β-Dxylopyranosyl-(1→3)-O-α-L-rhamnopyranosyl-(1→ 2)-O-α-L-arabinopyranoside of oleanolic acid were isolated from leaves of Kalopanax septemlobum var. typicum introduced to Crimea. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 40–43, January–February, 2006.  相似文献   

10.
The leaves of common ivy have yielded 11 triterpene glycosides: the 3-O-α-L-pyranosides of oleanolic acid (1), of echinocystic acid (2), and of hederagenin; the 3-O-[O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside]s of oleanolic acid (4), of echinocystic acid (5), and of hederagenin (6); the O-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester of hederagenin 3-O-α-L-pyranoside (7); the O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester of hederagenin 3-O-[O-α-L-pyranosyl-(1→2)-α-L-arabinopyranoside] (9); and the O-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl esters of oleanolic acid, echinocystic acid, and hederagenin 3-O-[O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside]s (8), (10), and (11), respectively. This is the first time that compounds (1), (2), (5), (7), (9), and (10) have been found in this plant. Simferopol' State University. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 742–746, November–December, 1994.  相似文献   

11.
Thalicoside D — a new triterpene glycoside isolated fromThalictrum minus L. (Ranunculaceae) — has the structure of oleanolic acid 3-O-[O-α-L-rhamnopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-α-L-arabinopyranoside 28-O-[O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside]. This structure was established by the use of the results of acid and alkaline hydrolyses, SIMS spectra, and one- and two-dimensional NMR spectroscopy. Deceased.  相似文献   

12.
Two new steroidal glycosides were isolated by fractionation of total extracted substances from inflorescences and flower stalks of Allium rotundum (Alliaceae). The structures were determined on the basis of chemical transformations, physical constants, and spectral data as 26-O-β-D-glucopyranosyl-(25R)-5α-furostan2α,3β,22α,26-tetraol 3-O-β-D-glucopyranosyl-(1 → 2)[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl(1 → 4)-β-D-galactopyranoside (2) and (25R)-5α-spirostan-2α,3β-diol 3-O-β-D-glucopyranosyl-(1 → 3)-βD-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-β-D-galactopyranoside (3).  相似文献   

13.

Background  

A fermented beverage of plant extracts was prepared from about fifty kinds of vegetables and fruits. Natural fermentation was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). We have previously examined the preparation of novel four trisaccharides from the beverage: O-β-D-fructopyranosyl-(2->6)-O-β-D-glucopyranosyl-(1->3)-D-glucopyranose, O-β-D-fructopyranosyl-(2->6)-O-[β-D-glucopyranosyl-(1->3)]-D-glucopyranose, O-β-D-glucopyranosyl-(1->1)-O-β-D-fructofuranosyl-(2<->1)-α-D-glucopyranoside and O-β-D-galactopyranosyl-(1->1)-O-β-D-fructofuranosyl-(2<->1)- α-D-glucopyranoside.  相似文献   

14.
The previously known glycosides 3-O-α-L-arabinopyranosyl-28-O-[α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]hederagenin and 3-O-[α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranosyl]-28-O-[α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]hederagenin and the new triterpene glycoside tauroside St-H1 — 3-O-β-D-glucopyransyl-28-O-[α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl]hederagenin — have been isolated from the stems ofHedera taurica Carr. M. V. Frunze Simferopol' State University. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 571–579, July–August, 1993.  相似文献   

15.
Structures of eight triterpene glycosides, of which the 28-O-(2-O-acetyl-and 3-O-acetyl-α-L-rhamnopyranosyl)-(1→4)-O-β-D-glucopyranosyl-(1→ 6)-O-β-D-glucopyranosyl esters of hederagenin 3-O-β-D-glucopyranosyl-(1→ 2)-O-α-L-arabinopyranoside (J1a and J1b) were new, from Cussonia paniculata (Araliaceae) leaves were established using chemical and NMR spectroscopic methods. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 149–152, March–April, 2006.  相似文献   

16.
A new minor asterosaponin (20S)-6-O-{β-d-fucopyranosyl-(1→2)-[β-d-fucopyranosyl-(1→4)-β-d-quinovopyranosyl-(1→2)]-β-d-quinovopyranosyl-(1→3)-β-d-quinovopyranosyl}-3β,6α,20-trihydroxycholest-9(11)-en-23-one 3-sulfate (archasteroside C) was isolated from the starfish Archaster typicus collected in shallow coastal waters of Vietnam. The structure of archasteroside C was determined by 2D NMR spectroscopy and electrospray ionization (ESI) tandem mass spectrometry.  相似文献   

17.
A capsular polysaccharide (CPS) containing D-galactosamine uronic acid and D-alanine was isolated from a culture of the marine proteobacterium Microbulbifer sp. KMM 6242. 2D NMR spectroscopy showed that the CPS is a homopolymer of 2-acetamido-2-deoxy-N-(D-galacturonyl)-D-alanine with the structure →4)-β-D-GalpNAcA6(D-Ala)-(1→. An O-specific polysaccharide containing D-ribose and D-galactose was isolated from the cell-membrane lipopolysaccharide. 1D and 2D NMR spectroscopy established the structure of the disaccharide repeating unit of the polysaccharide as →3)-β-D-Ribf-(1→4)-β-D-Galp-(1→.  相似文献   

18.
Two spirostanol saponins, one of which was a new compound, were isolated among the steroidal glycosides of Allium cyrillii Ten. Bulbs. The structures of these glycosides were established using chemical and spectral analytical methods as β-D-glycopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)β-D-galactopyranosyl-(1 → 3)-(25R)-5α-spirostan-2α,3β-diol and β-D-glucopyranosyl-(1 → 2)-[4-O-(3hydroxy-3-methylglutaryl)-β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-β-D-galactopyranosyl(1 → 3)-(25R)-5α-spirostan-2α,3β-diol.  相似文献   

19.
Two new ceramides were isolated from the 95% EtOH extract of traditional Chinese medicinal plant Isatis indigotica. Their structures were elucidated as 1-O-β-D-glucopyranosyl-(2S, 3R)-N-(2′-hydroxype-ntacosanoyl)-octadeca-11E-sphingenine (1) and 1-O-β-D-glucopyranosyl-(2S,3R)-N-(2′-hydroxyhe xacosanoyl)-octadeca-11E-sphingenine (2) on the basis of spectroscopic data. Their cytotoxic effects were evaluated by using MTT method.  相似文献   

20.
2-Aminoethyl glycoside of the hexasaccharide chain of ganglioside Fuc-GM1 was synthesized by a [3+3] synthetic scheme. At the key step of the synthetic route, glycosylation of the only hydroxyl group at C(4) of the galactose residue in an α-(N-acetylneuraminyl)-(2→3)-β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside derivative with a peracetylated thioglycoside of α-L-fucopyranosyl-(1→2)-β-D-galactopyranosyl-(1→3)-2-trichloroacetamido-2-deoxy-β-D-galactopyranose gave a protected hexasaccharide in high yield. Subsequent removal of the protecting groups gave the target 2-aminoethyl glycoside of the oligosaccharide chain of gan-glioside Fuc-GM1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 148–153, January, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号