首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Possibly because homogeneous palladium catalysts are not typical borrowing hydrogen catalysts and ligands are thus ineffective in catalyst activation under conventional anaerobic conditions, they had not been used in the N‐alkylation reactions of amines/amides with alcohols in the past. By employing the aerobic relay race methodology with Pd‐catalyzed aerobic alcohol oxidation being a more effective protocol for alcohol activation, ligand‐free homogeneous palladiums are successfully used as active catalysts in the dehydrative N‐alkylation reactions, giving high yields and selectivities of the alkylated amides and amines. Mechanistic studies implied that the reaction most probably proceeds via the novel relay race mechanism we recently discovered and proposed.  相似文献   

2.
Li Q  Fan S  Sun Q  Tian H  Yu X  Xu Q 《Organic & biomolecular chemistry》2012,10(15):2966-2972
By employing aerobic oxidation to aldehydes as a more effective alcohol activation strategy, we developed a green Cu-catalyzed N-alkylation method for various amides and amines with alcohols. This reaction is more advantageous than the literature methods for it uses a ligand-free copper catalyst, can be readily carried out under milder aerobic conditions and generates water as the only byproduct. More importantly, based on our mechanistic studies and also supported by the literature, rather than following the previously-proposed mechanisms, we deduce that the newly-proposed relay race process should be the most possible and a more rational mechanism for the reactions, especially under aerobic conditions.  相似文献   

3.
By using the famous Wilkinson’s catalyst,N-alkylation of sulfonamides can be easily realized under mild aerobic conditions by using alcohols as the alkylating reagent,giving monoalkylated sulfonamides in high yields and selectivities with water produced as the only byproduct.This advantageous aerobic method is potentially general in substrate scope that it can also be applied to other amides,amines and alcohols.  相似文献   

4.
The alkylation of amines by alcohols is a broadly applicable, sustainable, and selective method for the synthesis of alkyl amines, which are important bulk and fine chemicals, pharmaceuticals, and agrochemicals. We show that Cr complexes can catalyze this C?N bond formation reaction. We synthesized and isolated 35 examples of alkylated amines, including 13 previously undisclosed products, and the use of amino alcohols as alkylating agents was demonstrated. The catalyst tolerates numerous functional groups, including hydrogenation‐sensitive examples. Compared to many other alcohol‐based amine alkylation methods, where a stoichiometric amount of base is required, our Cr‐based catalyst system gives yields higher than 90 % for various alkyl amines with a catalytic amount of base. Our study indicates that Cr complexes can catalyze borrowing hydrogen or hydrogen autotransfer reactions and could thus be an alternative to Fe, Co, and Mn, or noble metals in (de)hydrogenation catalysis.  相似文献   

5.
The catalytic asymmetric reduction of ketimines has been explored extensively for the synthesis of chiral amines, with reductants ranging from Hantzsch esters, silanes, and formic acid to H2 gas. Alternatively, the amination of alcohols by the use of borrowing hydrogen methodology has proven a highly atom economical and green method for the production of amines without an external reductant, as the alcohol substrate serves as the H2 donor. A catalytic enantioselective variant of this process for the synthesis of chiral amines, however, was not known. We have examined various transition‐metal complexes supported by chiral ligands known for asymmetric hydrogenation reactions, in combination with chiral Brønsted acids, which proved essential for the formation of the imine intermediate and the transfer‐hydrogenation step. Our studies led to an asymmetric amination of alcohols to provide access to a wide range of chiral amines with good to excellent enantioselectivity.  相似文献   

6.
Simple pyrazole based palladacycle-phosphine with a high turnover has been developed and applied for the N-alkylation of amines and sulfanilamide using alcohols as substrates by hydrogen borrowing strategy. N-alkylation of primary and secondary amines resulted in high isolated yields at 100–130 °C, under solvent free conditions. More challenging secondary aliphatic as well as aromatic alcohols were also successfully utilized as alkylating agents under similar reaction conditions. The turn over number reached up to 43000 for N-benzylation of aniline using benzyl alcohol. Notably, regioselective N-alkylation of 2-aminobenzothiazole and 4-aminobenzenesulfonamide to the corresponding 2-N-(alkylamino)azoles and 4-amino-(N-alkyl)benzenesulfonamides using alcohols as alkylating agents have been achieved using our new pre-catalyst-phosphine system.  相似文献   

7.
以基于借氢策略的苯甲醇和苯胺一步合成N-苯基苄胺为模型反应,研究了三种不同表面结构的氧化铝对其负载的Pt-Sn催化剂上N-烷基化合成仲胺反应性能的影响.采用N2吸附-脱附法、压汞法、X射线衍射、透射电镜、扫描电镜、CO脉冲吸附、H2-程序升温还原及NH3-程序升温脱附等技术对载体和Pt-Sn/Al2O3催化剂进行了表征.结果表明,与Al2O3相互作用较弱且高度分散的Pt颗粒具有很高的催化活性,Al2O3载体较大的孔体积和大孔分布的孔结构有助于反应物扩散和吸附到催化剂表面并提高反应活性.同时也有利于反应产物从催化剂表面离开,从而提高催化剂的稳定性.然而Al2O3较强的酸性及酸性分布降低了产物仲胺的选择性和催化剂稳定性.  相似文献   

8.
罗智伟  顾辉子  周莉  严新焕 《应用化学》2009,26(10):1169-1173
以胺和醇为原料,在Ni-Sn/Al2O3催化下液相合成氮烷基胺类化合物。反应工艺为连续式反应,醇既是烷基化试剂,又是供氢体和溶剂。考察了180 ℃下不同的胺与各类醇在Ni-Sn/Al2O3催化作用下的氮烷基化反应。研究表明该烷基化反应具有普遍的适用性,多数胺与甲醇、乙醇、正丁醇反应,具有较高的氮烷基化总产率。一些胺与醇反应产率甚至在99%以上。本文作了催化剂稳定性测试,并通过XRD和TEM对催化剂进行了表征,分析了催化剂失活的原因。研究表明,该催化剂具有很高的稳定性可保持高活性超过480 h,Lewis酸中心是氮烷基化反应的活性中心,随着反应进行,Lewis酸中心转化为Brφnested酸中心,致使催化剂活性降低。  相似文献   

9.
Several novel pyridine-oxadiazole iridium complexes were synthesized and characterized through X-ray crystallography.The designed iridium.complexes revealed surprisingly high catalytic activity in C-N bondformation of amides and benzyl alcohols with the assistance of non-coordinating anions.In an attempt to achieve borrowing hydrogen reactions of amides with benzyl alcohols,N,N'-(phenylmethylene)dibenzamide products we re unexpectedly isolated under non-coordinating anion conditions,whereas N-benzylbenzamide products were achieved in the absence of non-coordinating anions.The mechanism explorations excluded the possibility of"silver effect"(silver-assisted or bimetallic catalysis)and revealed that the reactivity of iridium catalyst was varied by non-coordinating anions.This work provided a convenient and useful methodology that allowed the iridium complex to be a chemoselective catalyst and demonstrated the first example of non-coordinating-anion-tuned selective C-N bond formation.  相似文献   

10.
The alkylation of amines by alcohols is a broadly applicable, sustainable, and selective method for the synthesis of alkyl amines, which are important bulk and fine chemicals, pharmaceuticals, and agrochemicals. We show that Cr complexes can catalyze this C−N bond formation reaction. We synthesized and isolated 35 examples of alkylated amines, including 13 previously undisclosed products, and the use of amino alcohols as alkylating agents was demonstrated. The catalyst tolerates numerous functional groups, including hydrogenation-sensitive examples. Compared to many other alcohol-based amine alkylation methods, where a stoichiometric amount of base is required, our Cr-based catalyst system gives yields higher than 90 % for various alkyl amines with a catalytic amount of base. Our study indicates that Cr complexes can catalyze borrowing hydrogen or hydrogen autotransfer reactions and could thus be an alternative to Fe, Co, and Mn, or noble metals in (de)hydrogenation catalysis.  相似文献   

11.
The source of the effect of N-alkylation on the redox properties of Ni(II/I) and Cr(III/II) cyclam complexes has been investigated using DFT calculations. The structures of the anhydrous and hydrated complexes were optimized in the gas phase, and single point calculations were performed in a polarized continuum. The main results are the following: the decrease in outer sphere solvation upon N-alkylation is the major source of the relative stabilization of the lower oxidation state complexes by the tertiary amine ligands; tertiary amine nitrogen donors are stronger sigma-donors than the secondary amines, as predicted from the inductive effect of alkyls; steric strain elongates the metal-nitrogen bonds in the tertiary complexes and decreases the ligand strain energies; and the site of water binding to the complexes differs because of their different electronic structures (i.e., in the Ni complexes, the water molecules bind to the M[bond]N[bond]H sites, whereas in the Cr complexes they bind to the central metal cation). Outer sphere hydrogen bonding of water to the ligands in the coordination sphere lowers the ionization potentials by charge delocalization.  相似文献   

12.
N-alkylation of macrocyclic amines has a significant impact on their properties as ligands for metal ions. This article examines the development of the coordination chemistry of N-alkylated cyclam ligands from its inception in 1973 with the first report of tetramethylcyclam. Emphasis is on: (1) the stereochemistry of metal complexation, including the effects of inclusion of functional groups in one or two of the N-alkyl groups; (2) the effect of N-alkylation on the metal–donor interaction; (3) the ability of tertiary amine ligands to stabilize complexes of metal ions in unusual oxidation states.  相似文献   

13.
The FeCl2/K2CO3 catalyst system was developed successfully for the N-alkylation of sulfonamides with benzylic alcohols via borrowing hydrogen method. XPS analysis suggested a possible catalyst cycle between Fe(II) and Fe(0). Under the optimized condition, the scope of the protocol was demonstrated in 21 different alkylation reactions. High yields, in general >90%, are achieved in most cases.  相似文献   

14.
Covalent attachment of a 1,2,4-triazole iridium complex to mesoporous MCM-41 generated a heterogeneous catalyst that was found to be effective in the synthesis of 2-aryl isoindolines, quinolines, cyclic amines, and symmetrical secondary amines through a cascade borrowing hydrogen strategy. Interestingly, the supported heterogeneous iridium catalyst prepared from the 1,2,4-triazole iridium complex and mesoporous MCM-41 exhibited high catalytic activity in the preparation of 2-aryl isoindoline derivatives and symmetrical secondary amines. The catalyst system is highly recyclable for at least five times. Besides the important effect of the triazole, iridium sites grafted on siliceous supports can act as multifunctional catalytic centers and thus greatly enhance the catalytic activity of the catalysts. Furthermore, mechanistic experiments revealed that the reaction is initiated by an initial alcohol dehydrogenation and promoted by an iridium hydride intermediate. Importantly, the direct detection of a diagnostic iridium hydride signal confirmed that the synthesis of 2-aryl isoindolines occurs by a borrowing hydrogen process. This work provides an efficient example of isoindolines synthesis through a borrowing hydrogen strategy.  相似文献   

15.
A novel method for the one pot synthesis of N-alkyl arylamines from nitro aromatic compounds and alcohols is proposed through the combination of the aqueous-phase reforming of alcohol for hydrogen production, the reduction of nitro aromatic compounds for the synthesis of aromatic amine and the N-alkylation of aromatic amine for the production of N-alkyl arylamine over an identical catalyst under the same conditions of temperature and pressure in a single reactor. In this process, hydrogen generated from the aqueous-phase reforming of alcohols was used in-situ for the hydrogenation of nitro aromatic compounds for aromatic amine synthesis, followed by N-alkylation of aromatic amine with alcohols to form the corresponding N-alkyl arylamines at a low partial pressure of hydrogen. For the system composed of nitrobenzene and ethanol, under the conditions of 413 K and PN2 = 1 MPa, the conversion degrees of nitrobenzene and aniline were 100%, the selectivity to N-ethylaniline and N, N-diethylaniline were 85.9% and 0%-4%, respectivity, after reaction for 8 h at the volumetric ratio of nitrobenzene:ethanol:water = 10:60:0. The selectivity for N, N-diethylaniline production is much lower than that through the traditional method. In this process, hydrogen and aromatic amines generated from the aqueous-phase reforming of alcohols and hydrogenation of nitro aromatic compounds, respectively, could be promptly removed from the surface of the catalyst due to the occurrence of in-situ hydrogenation and N-alkylation reactions. Thus, this may be a potential approach to increase the selectivity to N-alkyl arylamine.  相似文献   

16.
Amide C?N bonds are thermodynamically stable and their fission, such as by hydrolysis and alcoholysis, is considered a long‐challenging organic reaction. In general, stoichiometric chemical transformations of amides into the corresponding esters and acids require harsh conditions, such as strong acids/bases at a high reaction temperature. Accordingly, the development of catalytic reactions that cleave not only primary and secondary amides, but also tertiary amides in mild conditions, is in high demand. Herein, we surveyed typical stoichiometric transformations of amides, and highlight our recent achievements in the catalytic esterification of amides using scandium, manganese, and zinc catalysts, together with some recent catalyst systems using late‐transition metal reported by other groups.  相似文献   

17.
We report a catalyst for intermolecular hydroamination of vinylarenes that is substantially more active for this process than catalysts published previously. With this more reactive catalyst, we demonstrate that additions of amines to vinylarenes and dienes occur in the presence of potentially reactive functional groups, such as ketones with enolizable hydrogens, free alcohols, free carboxylic acids, free amides, nitriles, and esters. The catalyst for these reactions is generated from [Pd(eta(3)-allyl)Cl](2) (with or without added AgOTf) or [Pd(CH(3)CN)(4)](BF(4))(2) and Xantphos (9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene), which generates complexes with large P-Pd-P bite angles. Studies on the rate of the C-N bond-forming step that occurs by attack of amine on an eta(3)-phenethyl and an eta(3)-allyl complex were conducted to determine the effect of the bite angle on the rate of this nucleophilic attack. Studies on model eta(3)-benzyl complexes containing various bisphosphines showed that the nucleophilic attack was faster for complexes containing larger P-Pd-P bite angles. Studies of substituted unsymmetrical and unsubstituted symmetrical model eta(3)-allyl complexes showed that nucleophilic attack on complexes ligated by Xantphos was faster than on complexes bearing ligands with smaller bite angles and that nucleophilic attack on unsymmetrical allyl complexes with larger bite angle ligands was faster than on unsymmetrical allyl complexes with smaller bite angle ligands. However, monitoring of catalytic reactions of dienes by (31)P NMR spectroscopy showed that the concentration of active catalyst was the major factor that controlled rates for reactions of symmetrical dienes catalyzed by complexes of phosphines with smaller bite angles. The identity of the counterion also affected the rate of attack: reactions of allylpalladium complexes with chloride counterion occurred faster than reactions of allylpalladium complexes with triflate or tetrafluoroborate counterion. As is often observed, the dynamics of the allyl and benzyl complexes also depended on the identity of the counterion.  相似文献   

18.
A general cobalt-catalyzed N-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported. The optimal catalyst for this transformation is prepared by pyrolysis of a specific templated material, which is generated in situ by mixing cobalt salts, nitrogen ligands and colloidal silica, and subsequent removal of silica. Applying this novel Co-nanoparticle-based material, >100 primary, secondary, and tertiary amines including N-methylamines and selected drug molecules were conveniently prepared starting from inexpensive and easily accessible alcohols and amines or ammonia.

A general cobalt-catalyzed N-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported.  相似文献   

19.
A process for preparation of amides from unactivated esters and amines has been developed using a catalytic system comprised of group (IV) metal alkoxides in conjunction with additives including 1-hydroxy-7-azabenzotriazole (HOAt). In general, ester-amide exchange proceeds using a variety of structurally diverse esters and amines without azeotropic reflux to remove the alcohol byproduct. Initial mechanistic studies on the Zr(Ot-Bu)4-HOAt system revealed that the active catalyst is a novel, dimeric zirconium complex as determined by X-ray crystallography.  相似文献   

20.
The implementation of inexpensive, Earth‐abundant metals in typical noble‐metal‐mediated chemistry is a major goal in homogeneous catalysis. A sustainable or green reaction that has received a lot of attention in recent years and is preferentially catalyzed by Ir or Ru complexes is the alkylation of amines by alcohols. It is based on the borrowing hydrogen or hydrogen autotransfer concept. Herein, we report on the Co‐catalyzed alkylation of aromatic amines by alcohols. The reaction proceeds under mild conditions, and selectively generates monoalkylated amines. The observed selectivity allows the synthesis of unsymmetrically substituted diamines. A novel Co complex stabilized by a PN5P ligand catalyzes the reactions most efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号