首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new poly(arylene ether phenyl-s-triazine)s was prepared by the nucleophilic aromatic substitution polymerization of the potassium salt of bisphenols with 2,4-bis (halophenyl)-6-phenyl-s-triazine in N-methyl-2-pyrrolidone at elevated temperature. The polymers with inherent viscosities exceeding 0.5 were obtained after polymerization for 1 h using 2,4-bis(fluorophenyl)-6-phenyl-s-triazine as a monomer. The glass transition temperatures of the resulting polymers ranged from 200 to 260°C depending on the bisphenol used in the polymer synthesis. The poly(arylene ether phenyl-s-triazine)s demonstrated excellent thermal stabilities in excess of 490°C (5% weight loss in air). The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether phenyl-s-triazine)s belong to the most superior class of heat resistant polymers, such as polyimide Kapton?. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Poly(arylene ether ketone)s containing imide units were prepared by the aromatic nucleophilic displacement reaction of the potassium salts of bisphenols with bis(4-fluorobenzoyl)phthalimides in N-methyl-2-pyrrolidone at elevated temperature. The polymers having inherent viscosities of 0.34–0.77 dL/g were obtained in 2 h. The polymers exhibited glass transition temperatures ranging from 216 to 268°C and decomposition temperatures (5% weight loss under air atmosphere) ranging from 450–570°C mainly depending on the bisphenols used in the polymer synthesis. The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether ketone imide)s belong to a superior class of heat resistant polymers. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Novel poly(arylene ether)s, poly(arylene thioether)s, and poly(arylene sulfone)s were synthesized from the dihydroxy(imidoarylene) monomer 1 . The syntheses of poly(arylene ether)s were carried out in DMAc in the presence of anhydrous K2CO3 by a nucleophilic substitution reaction between the bisphenol and activated difluoro compounds. Poly(arylene thioether)s were synthesized according to the recently discovered one-pot polymerization reaction between a bis(N,N′-dimethyl-S-carbamate) and activated difluoro compounds in the presence of a mixture of Cs2CO3 and CaCO3. The bis(N,N′-dimethyl-S-carbamate) 3 was synthesized by the thermal rearrangement reaction of bis(N,N′-dimethylthiocarbamate) 2 , which was synthesized from 1 by a phase-transfer catalyzed reaction. The poly(arylene thioether)s were further oxidized to form poly(arylene sulfone)s, which would be very difficult, if not impossible, to synthesize by other methods. All of the polymers described have extremely high Tgs and thermal stability as determined from DSC and TGA analysis. Poly(arylene sulfone)s have the highest Tgs and they are in the range of 298–361°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1201–1208, 1998  相似文献   

4.
Novel poly(arylene ether)s with a rigid and zigzag 4,4″-o-terphenyldiyl structure, introduced into the polymer backbone were synthesized by nucleophilic displacement reaction of 4,4″-dihydroxy-o-terphenyl with several activated aromatic dihalides in virtually quantitative yields. The poly(arylene ether)s having high molecular weight show both good solubility in common organic solvents and high thermal stability up to 545°C. They are amorphous with glass transition temperatures of 160–200°C.  相似文献   

5.
Novel ionomers based on polybenzimidazole block sulfonated poly(arylene ether sulfone) show excellent thermal properties. The ionic aggregation of sulfonic acid groups leads to well-developed phase separated morphology and thus high proton conductivity at wide humidity range, up to 65 mS cm(-1) at 90% relative humidity.  相似文献   

6.
The bisphenol 4,4″‐dihydroxy‐5′‐phenyl‐m‐terphenyl ( 4 ), containing a 1,3,5‐triphenylbenzene moiety, was synthesized from a pyrylium salt obtained by the reaction of benzaldehyde with p‐methoxyacetophenone with boron trifluoride etherate as a condensing agent. Polymers were obtained from 4 by a nucleophilic displacement reaction with various activated difluoro monomers and with K2CO3 as a base. A series of new poly(arylene ether)s ( 8a – 8f ) were obtained that contained phenyl‐substituted m‐terphenyl segments in the polymer chain. Polymers with inherent viscosities of 0.41–0.99 dL/g were obtained in yields greater than 96%. The polymers were soluble in a variety of organic solvents, including nonpolar solvents such as toluene. Clear, transparent, and flexible films cast from CHCl3 showed high glass‐transition temperatures (Tg = 198–270 °C) and had excellent thermal stability, as shown by temperatures of 5% weight loss greater than 500 °C. 4 was converted via N,N‐dimethyl‐O‐thiocarbamate into the masked dithiol 4,4″‐bis(N,N′‐dimethyl‐S‐thiocarbamate)‐5′‐phenyl‐m‐terphenyl and was polymerized with activated difluoro compounds in the presence of a mixture of Cs2CO3 and CaCO3 as a base in diphenyl sulfone as a solvent. A series of new poly(arylene thioether)s ( 9a – 9e ) were obtained with Tg values similar to those of 8a – 8e . 9a – 9e were further oxidized into poly(arylene sulfone)s with Tg values 40–80 °C higher than those for 8a – 8e and 9a – 9e . These polymers also had good solubility in organic solvents. A sulfonic acid group was selectively introduced onto the pendent phenyl group of polymers 8a and 8f by reaction with chlorosulfonic acid. The polymers were soluble in dipolar aprotic solvents and formed films via casting from dimethylformamide. Polymers 8a – 8f , 11a , and 11f showed blue and red fluorescence under ultraviolet–visible light with emission maxima at 380–440 nm. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 496–510, 2002; DOI 10.1002/pola.10136  相似文献   

7.
Two groups of synthesized sulfonated poly(ether sulfone)s with similar structures but different size of repeat units were selected. Investigation of the properties of these copolymers with different sulfonation contents for application as fuel cell membrane was the main aim of this study. These groups of copolymers showed different thermal behavior, mechanical properties, dimensional and oxidative stability, ion exchange capacity, water uptake, and proton conductivity. Structure–property relation was surveyed, and the copolymers showed acceptable results for use as fuel cell membrane. The swelling ratio of the copolymers was in the range of 3.3–6.6%, and the proton conductivity of them was about 0.020–0.077 S/cm at 25°C. These data were comparable with Nafion 115 with 8.15% of swelling ratio and 0.085 S/cm of proton conductivity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Fluorinated dihydroxy phosphine oxide monomers were synthesized via chlorination, Grignard, and demethylation techniques. The prepared monomer was successfully polymerized with each of the three perfluorinated monomers (decafluorobiphenyl, decafluorobenzophenone, and pentafluorophenylsulfide) by nucleophilic aromatic substitution. The average molecular weight ranged between 7800 and 14,900 g/mol. The glass‐transition temperatures of the polymers were registered in the range of 185–235 °C, and all the polymers exhibited high thermal stability up to 326–408 °C. The results of the refractive‐index measurements indicated control of the refractive index between 1.5181 and 1.5536 and an optical loss of 0.53 dB/cm at 1550 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1497–1503, 2003  相似文献   

9.
Random and multiblock sulfonated poly(arylene ether sulfone)s (SPEs) containing various azole groups such as oxadiazole and triazole were synthesized and characterized for fuel cell application. Successful preparation of SPE membranes depended on the structure of azole groups, which affected solubility of precursors and the resulting SPEs. Although oxadiazole groups were incorporated into hydrophobic component, they were found to be hydrophilic to give higher proton conductivity. Introduction of oxadiazole groups into random SPE gave comparable proton conductivity to that of Nafion NRE at >60% relative humidity at 80 °C. Block copolymer structure further increased the proton diffusion coefficient without increasing ion exchange capacity. Hydrolytic and oxidative stability of the SPE membranes was affected by both hydrophilic and hydrophobic components. Oxadiazole groups gave negative impact on hydrolytic and mechanical stability to the SPE membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Poly(arylene ether)s containing N-arylenebenzimidazole groups were prepared by the aromatic nucleophilic displacement reaction of two new bis(hydroxyphenyl-N-arylenebenzimidazole)s with activated aromatic difluorides in sulfolane at 200°C in the presence of anhydrous potassium carbonate. The bis(hydroxyphenyl-N-arylenebenzimidazole)s were prepared from bis(o-aminoanilino) arylenes and phenyl-4-hydroxybenzoate. The polymers were soluble in N-methyl-2-pyrrolidinone and m-cresol and exhibited inherent viscosities from 0.37–0.86 dL/g and glass transition temperatures from 219–289°C. Thermogravimetric analyses showed 5% weight losses from 463–506°C in air and 467–522°C in nitrogen. Unoriented thin films exhibited tensile strengths, moduli, and break elongations at 23°C of 10.2–12.5 ksi, 318–365 ksi, and 4–7%, respectively, and at 177°C of 5.1–6.9 ksi, 256–296 ksi, and 1–5%, respectively. A 50 : 50 random copolymer prepared from 1,3-bis(4-fluorobenzoyl) benzene, 1,1'-(4,4'-biphenylene)-bis[2-(4-hydroxyphenyl)benzimidazole], and 5,5'-bis[2-(4-hydroxyphenyl)benzimidazole] exhibited higher moisture absorption and lower tensile properties than those predicted by a rule of mixtures relationship. The chemical, physical, and mechanical properties of these polymers are discussed. © 1993 John Wiley & Sons, Inc.?  相似文献   

11.
12.
The resistance of five poly(arylene ether ketone)s with related chemical structures to degradation by ionizing radiation has been studied by ESR spectroscopy and yields of volatile products. All of the polymers showed high resistance to radiation with low yields of radicals after irradiation in vacuum at 77 K (when up to 84% of the radicals were identified as radical anions) and much lower yields at 300 K. The yields of volatile products were much less than reported for poly(arylene sulfone)s [1, 2]. Methyl substitution on a main-chain aromatic ring decreased the radiation resistance, but methane only comprised 10% of the volatile products from the methyl-substituted polymers. A polymer containing an isopropylidene group in the main chain and a substituent aromatic carbonyl showed significantly decreased radiation resistance. Extremely low radical yields were obtained after irradiation in air at 300 K, contrary to many polymers. XPS analysis showed an increase in C–O bonds on the surface after irradiation in air.  相似文献   

13.

The results of research from the scientific school of Academician V. V. Korshak in the field of synthesis and properties of amorphous copolyarylene ether ketones of random and block structure obtained by the reaction of nucleophilic substitution are summarized and analized in the author’s review. The relationship between the properties of copolyarylene ether ketones, their chemical structure, and molecular weight is considered.

  相似文献   

14.
Amorphous polyarylene ether ketones were examined in the glassy state by positron annihilation lifetime spectroscopy (PALS) and in the melt by standard rheological techniques. Specimens were well-characterized fractions of two isomeric structures. PALS clearly shows that the polymer with meta linkages in its backbone contains larger voids (> 0.25 nm radius). Thus despite their similar bulk densities, the two materials must pack very differently on a local scale. On the other hand, the free volumes inferred from the WLF treatment of melt viscosity data are practically identical in both materials ca. 4% at Tg. The comparison between techniques sheds some light on the distribution of free volume. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
Poly(arylene ether imidazole)s were prepared by the aromatic nucleophilic displacement reaction of a bisphenol imidazole with activated aromatic dihalides. The polymers had glass transition temperatures ranging from 230 to 318°C and number-average molecular weights as high as 82,000 g/mol. Thermogravimetric analysis showed a 5% weight loss occurring ~ 400°C in air and ~ 500°C in nitrogen. Typical neat resin mechanical properties obtained at room temperature included tensile strength and tensile modulus of 14.2 and 407 ksi and fracture energy (Glc) of 23 in. lb/in.2 Titanium-to-titanium tensile shear strengths measured at 23 and 200°C were 4800 and 3000 psi, respectively. In addition, preliminary data were obtained on carbon fiber laminates. The chemistry, physical, and mechanical properties of these polymers are discussed.  相似文献   

16.
Novel sulfur‐containing biphenol monomers were prepared in high yields by the reaction of 4‐mercaptophenol with chloropyridazine or chlorophthalazine compounds. High‐molecular‐weight poly(arylene ether)s were synthesized by a nucleophilic substitution reaction between these sulfur‐containing monomers and activated difluoro aromatic compounds. The inherent viscosities of these polymers ranged from 0.34 to 0.93 dL/g. The poly(pyridazine)s exhibited glass‐transition temperatures greater than 165 °C. The poly(phthalazine)s showed higher glass‐transition temperatures than the poly(pyridazine)s. A polymer synthesized from a bisphthalazinebiphenol and bis(4‐fluorophenyl)sulfone had the highest glass‐transition temperature (240 °C). The thermal stabilities of the poly(pyridazine)s and poly(phthalazine)s showed similar patterns of decomposition, with no significant weight loss below 390 °C. The poly(phthalazine)s were soluble in chlorinated solvents such as chloroform, and the poly(pyridazine)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(pyridazine)s and poly(phthalazine)s could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 262–268, 2007  相似文献   

17.
Poly(arylene ether sulfone) copolymers derived from 9,9-bis(4-hydroxyphenyl)fluorene, bisphenol S and 4,4′-difluorodiphenylsulfone and poly(arylene ether ketone) copolymers derived from 4-phenoxybiphenyl, diphenyl ether and isophthaloyl chloride were prepared as precursor polymers for sulfonation reaction in which sulfonic groups are introduced quantitatively into specified positions. Sulfonation reaction for these two series of copolymers by concentrated sulfuric acid was successfully carried out to give sulfonated polymers with controlled positions and degree of sulfonation. Thermal stability, moisture absorption and proton conductivity for these two series of copolymers were measured and the results were compared to those of perfluorosulfonic acid polymers.  相似文献   

18.
A series of novel poly(arylene ether ketone)s were synthesized from the reaction of hydroquinone and 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one with 4,4′-difluorobenzophenone in N-cyclohexylpyrrolidinone containing anhydrous potassium carbonate. The polymers exhibited high glass transition temperatures together with excellent thermooxidative stability. The chain structure of these polymers was studied by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction techniques (WAXD), and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). The experimental results indicated that these “as-made” copoly(aryleneketone)s containing hydroquinone moieties exhibited a block chain structure with segments which mainly consisted of hydroquinone and 4,4′-difluorobenzophenone. These chain segments resulted in crystallites in the polymers although they are thermodynamically unstable. The polymers showed thermal properties comparable to commercial PEEK, but the conditions for synthesis are much milder. The glass transition temperatures and solubilities of the copoly(arylene ketone)s tended to increase with increasing phthalazinone moiety content, while the crystallite melting points and crystallinity appeared to decrease. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1781–1788, 1999  相似文献   

19.
Self-crosslinkable poly(arylene ether)s 6 , and 8 , containing pendent triazene groups were prepared by nucleophilic substitution reaction of poly(arylene ether)s 5 , and 7 , respectively, with 1-[4-(4-hydroxyphenoxy)phenylene]triazenes, 4 , in the presence of potassium carbonate in N,N-dimethylacetamide. A series of triazenes 4 containing various substituents have been synthesized. Self-crosslinkable polymer 6e containing phenyl-substituted triazene pendants can be crosslinked at 215°C, which is about 40°C lower than the glass transition temperature of the virgin base polymer 5 . The degree of crosslinking can be tailored by varying the concentration of the pendent phenylenetriazene groups in the polymer. After curing, the flexible polymer films (ca. 10 μm thick) exhibit high gel contents, increased glass transition temperatures, improved resistance to organic solvents, and little change in dielectric constant and thermal stability. These self-crosslinkable poly(arylene ether)s are potential candidates for electronic applications. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Structurally different poly(arylene ether sulphone) (PES) copolymers were synthesized by reacting stoichiometric amount of dichlorodiphenyl sulphone (DCDPS) with bisphenols. The molar ratio of bisphenol-A and phenolphthalein (ESP)/hydroquinone (ESH)/resorcinol (ESR) was varied to prepare nine copolymer samples. Structural characterization was done by FT-IR and 1H-NMR studies. The initial decomposition temperature as well as temperature of maximum rate of mass loss in ESR and ESH copolymers were similar and a marginal decrease in these decomposition temperatures were observed by increasing the isopropylidine units in the backbone. High char residue at 800°C was observed in polymers having high content of phthalein units.The paper was presented at Thermans 2004 held at Baroda, January 20–22, 2004.Reliance Industries Limited is gratefully acknowledged for creating a Chair at IIT Delhi (I. K. Varma) and Council of Scientific and Industrial Research for providing scholarship to one of the authors (R. T. S. Muthu Lakshmi).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号