首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syntheses and physical properties of cyclometalated Ru(II) complexes containing a triphenylamine (TPA) unit bearing aliphatic groups are reported. Each member of the series consists of an octahedral Ru(II) center coordinated by a tridentate polypyridyl ligand and a tridentate cyclometalating ligand. One of the chelating ligands contains electron-deficient methyl ester groups, while a TPA unit is attached to the central ring of the adjacent chelating ligand through a thiophene bridge. This study builds on our previous work (Inorg. Chem. 2011, 50, 6019-6028; Inorg. Chem. 2011, 50, 5494-5508) by (i) outlining a synthetic protocol for installing aliphatic groups on the TPA substituents, (ii) examining the role that terminal -O-hexyl and -S-hexyl groups situated on the TPA have on the electrochemical properties, and (iii) demonstrating the potential benefit of installing the TPA on the neutral chelating ligand rather than the anionic chelating ligand. The results reported herein provide important synthetic advances for our broader goal of developing bis-tridentate cyclometalated Ru(II) complexes for light-harvesting applications.  相似文献   

2.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

3.
A series of asymmetrical bis-tridentate cyclometalated complexes including [Ru(Mebib)(Mebip)](+), [Ru(Mebip)(dpb)](+), [Ru(Mebip)(Medpb)](+), and [Ru(Mebib)(tpy)](+) and two bis-tridentate noncyclometalated complexes [Ru(Mebip)(2)](2+) and [Ru(Mebip)(tpy)](2+) were prepared and characterized, where Mebib is bis(N-methylbenzimidazolyl)benzene, Mebip is bis(N-methylbenzimidazolyl)pyridine, dpb is 1,3-di-2-pyridylbenzene, Medpb is 4,6-dimethyl-1,3-di-2-pyridylbenzene, and tpy is 2,2':6',2″-terpyridine. The solid-state structure of [Ru(Mebip)(Medpb)](+) is studied by X-ray crystallographic analysis. The electrochemical and spectroscopic properties of these ruthenium complexes were studied and compared with those of known complexes [Ru(tpy)(dpb)](+) and [Ru(tpy)(2)](2+). The change of the supporting ligands and coordination environment allows progressive modulation of the metal-associated redox potentials (Ru(II/III)) from +0.26 to +1.32 V vs Ag/AgCl. The introduction of a ruthenium cyclometalated bond in these complexes results in a significant negative potential shift. The Ru(II/III) potentials of these complexes were analyzed on the basis of Lever's electrochemical parameters (E(L)). Density functional theory (DFT) and time-dependent DFT calculations were carried out to elucidate the electronic structures and spectroscopic spectra of complexes with Mebib or Mebip ligands.  相似文献   

4.
Here, we report on a fluorescent 1,2,4-thiadiazole derivative (oxidized form) and its reduced form, the corresponding iminoyl thiourea. The thiadiazole displays a strong modulation of its fluorescence behavior, selectively upon addition of Cu(II), while the iminoyl thiourea functions as a chemodosimeter for Hg(II). Additionally, the Cu(II)-thiadiazole complex is characterized by HRMS, and the Hg(II)-induced desulfurization of the iminoyl thiourea is monitored by mass spectrometry.  相似文献   

5.
Exposure of acetonitrile/methanol solutions of [PPN][Ru(DPPBT)3] [PPN = bis(triphenylphosphoranylidene); DPPBT = 2-diphenylphosphinobenzene thiolate] to oxygen initiates metal-centered oxidation, yielding the ruthenium(III) thiolate Ru(DPPBT)3. Ru(DPPBT)3 further reacts with oxygen, at sulfur, to give the ruthenium(III) sulfinate complex [Ru(DPPBT-O2)2(DPPBT)], which is reduced under ambient conditions to [PPN][Ru(DPPBT-O2)2(DPPBT)]. Ruthenium(II) sulfinate is the only product isolated from acetonitrile/methanol. Yellow crystals of [PPN][Ru(DPPBT-O2)2(DPPBT)] were obtained. Ruthenium(III) sulfinate was isolated as green prism-shaped crystals upon oxygenation of [PPN][Ru(DPPBT)3] in chlorobenzene/hexane. Electrochemical oxidation of ruthenium(II) sulfinate yields the ruthenium(III) derivative, which is rapidly reduced back to ruthenium(II) upon the addition of hydroxide.  相似文献   

6.
Cationic substitutionally inert cyclometalated ruthenium (II) and osmium (II) complexes, ([Mt(o‐C6H4‐2‐py)(LL)2]PF6), where LL‐1,10‐phenanthroline (phen) or 2,2′‐bipyridine (bipy), were used for radical polymerization of styrene. Gradual modification of the complexes within the series allowed comparison of the catalytic activity and the redox properties. There was no correlation between the reducing powers of the complexes and their catalytic activities. The osmium compound of the lowest reduction potential was not active. All the ruthenium complexes catalyzed the polymerization of styrene in a controlled manner; but the level of control and the catalytic activity were different under the same polymerization conditions. [Ru(o‐C6H4‐2‐py)(phen)2]PF6 demonstrated the best catalytic performance though its redox potential was the highest. It catalyzed the “living” polymerization with a reasonable rate at a catalyst‐to‐initiator ratio of 0.1. 1 equiv. of Al(OiPr)3 accelerated the polymerization and improved the control, but higher amount of Al(OiPr)3 did not speed up the polymerization and moved the process into the uncontrollable regime. Under the most optimal conditions, the controlled polymerization occurs fast without any additive and the catalyst degradation. Added free ligands inhibited the polymerization suggesting that the catalytically active ruthenium intermediates are generated via the reversible dechelation of bidentate phen or bipy ligands. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3814–3828, 2009  相似文献   

7.
The novel steroidal conjugate 17-α-[2-phenylpyridyl-4-ethynyl]-19-nortestosterone (LEV-ppy) (1) and the steroid-C,N-chelate ruthenium(II) conjugate [Ru(η(6)-p-cymene)(LEV-ppy)Cl] (2) have been prepared. At 48 h incubation time, complex 2 is more active than cisplatin (about 8-fold) in T47D (breast cancer) and also shows an improved efficiency when compared to its nonsteroidal analogue [Ru(η(6)-p-cymene)(ppy)Cl] (ppy = phenylpyridine) (3) in the same cell line. The act of conjugating a levonorgestrel group to a ruthenium(II) complex resulted in synergistic effects between the metallic center and the steroidal ligand, creating highly potent ruthenium(II) complexes from the inactive components. The interaction of 2 with DNA was followed by electrophoretic mobility. Theoretical density functional theory calculations on complex 2 show the metal center far away from the lipophilic steroidal moiety and a labile Ru-Cl bond that allows easy replacement of Cl by N-nucleophiles such as 9-EtG, thus forming a stronger Ru-N bond. We also found a minimum energy location for the chloride counteranion (4(+)·Cl(-)) inside the pseudocavity formed by the α side of the steroid moiety, the phenylpyridine chelating subsystem, and the guanine ligand, i.e., a host-guest species with a rich variety of nonbonding interactions that include nonclassical C-H···anion bonds, as supported by electrospray ionization mass spectra.  相似文献   

8.
p-Phenylenediamine bearing terminal bipyridyl moieties was synthesized by palladium-catalyzed amination. The corresponding ruthenium(II) complex was formed and characterized, providing a redox-switchable photoinduced electron-transfer system.  相似文献   

9.
The in vitro biological activity towards the MDA-MB-231 triple-negative breast cancer cell line of two different series of anionic Pt(II) organometallic complexes was tested. For the first time, cytotoxic activity of anionic Pt(II) complexes has been observed. The anionic compounds of general formula NBu4[(C^N)Pt(O^O)], where (C^N) represents the cyclometalated form of 2-phenylpyridine (H(PhPy)), 2-thienylpyridine (H(Thpy)) or 2-benzo[h]quinoline (H(Bzq)), feature two different (O^O) chelated ligands: tetrabromocatechol [BrCat]2− ( 1 – 3 ) or alizarine [Aliz]2− ( 4 – 6 ). Complexes 1 – 6 displayed a significant cytotoxic effect against the studied cell line (IC50 range of 1.9–52.8 μM). For BrCat-containing complexes 1 – 3 , the biological activity was independent of the nature of the coordinated (C^N) ligand. In contrast, in the case of 4 – 6 , the cytotoxicity (significantly high for 4 ) was concomitantly induced by the presence of either the PhPy or the [Aliz]2− ligand. Since complexes 1–6 are emissive in solution, the potential use of 4 as a theranostic agent was investigated using confocal analysis. The fluorescence signal from MDA-MB-231 cells incubated with 4 indicated the localization of the compound into the cytosol region.  相似文献   

10.
Recently, we observed that the enantiopure Lambda form of the tributylammonium salt of the chiral anion tris[tetrachlorobenzene-1,2-bis(olato)]phosphate, also named Trisphat, was able to induce an efficient resolution of a Delta,Lambda racemic mixture of cis-[Ru(dmp)2(NCCH3)2](PF6)2 (dmp=2,9-dimethyl-1,10-phenanthroline) due to the spontaneous and selective precipitation of the heterochiral pair [Delta-Ru(dmp)2(CH3CN)2][Lambda-Trisphat]2. We report here that the combination of such a stereoselective precipitation process and irradiation results in the quantitative conversion of the initial [Ru(dmp)2(NCCH3)2]2+ racemate into only one of the two enantiomers. This is the first example in inorganic chemistry of an asymmetric transformation that leads to a chiral complex with no chiral ligand. Finally, three new racemic ruthenium bis(diimine) complexes, namely [Ru(dmp)2(NCCH3)Py](PF6)2 (Py=pyridine), [Ru(dmp)2(1,3-diaminopropane)](PF6)2, and [Ru(dmp)2(ethylenediamine)](PF6)2 were synthesized. For all of them, crystallization-induced asymmetric transformation proved to be an efficient way of obtaining the corresponding optically active chiral-at-metal complexes in high yields and with excellent stereoselectivities.  相似文献   

11.
We describe the synthesis, electrochemistry, and photophysical properties of several Ru(II) complexes bearing different numbers of pyrenylethynylene substituents in either the 5- or 5,5'-positions of 2,2'-bipyridine, along with the appropriate Ru(II) model complexes bearing either bromo- or ethynyltoluene functionalities. In addition, we prepared and studied the photophysical behavior of the diimine ligands 5-pyrenylethynylene-2,2'-bipyridine and 5,5'-dipyrenylethynylene-2,2'-bipyridine. Static and dynamic absorption and luminescence measurements reveal the nature of the lowest excited states in each molecule. All model Ru(II) complexes are photoluminescent at room temperature and exhibit excited-state behavior consistent with metal-to-ligand charge transfer (MLCT) characteristics. In the three Ru(II) molecules bearing multiple pyrenylethynylene substituents, there is clear evidence that the lowest excited state is triplet intraligand (3IL)-based, yielding long-lived room temperature phosphorescence in the red and near IR. This phosphorescence emanates from either 5-pyrenylethynylene-2,2'-bipyridine or 5,5'-dipyrenylethynylene-2,2'-bipyridine, depending upon the composition of the coordination compound. In the former case, the excited-state absorption difference spectra that were measured for the free ligand are easily superimposed with those obtained for the metal complexes coordinated to either one or two of these species. The latter instance is slightly complicated since coordination of the 5,5'-ligand to the Ru(II) center planarizes the diimine structure, leading to an extended conjugation on the long axis with a concomitant red shift of the singlet pi-pi absorption transitions and the observed room temperature phosphorescence. As a result, transient absorption measurements obtained using free 5,5'-dipyrenylethynylene-2,2'-bipyridine show a marked blue shift relative to its Ru(II) complex, and this extended pi-conjugation effect was confirmed by coordinating this ligand to Zn(II) at room temperature. In essence, all three pyrenylethynylene-containing Ru(II) complexes are unique in this genre of chromophores since the lowest excited state is 3IL-based at room temperature and at 77 K, and there is no compelling evidence of interacting or equilibrated excited states.  相似文献   

12.
A small series of ruthenium(II) tris(2,2'-bipyridine) complexes has been synthesized in which ethynylated thiophene residues are attached to one of the 2,2'-bipyridine ligands. The photophysical properties depend on the conjugation length of the thiophene-based ligand, and in each case, dual emission is observed. The two emitting states reside in thermal equilibrium at ambient temperature and can be resolved by emission spectral curve-fitting routines. This allows the properties of the two states to be evaluated in both fluid butyronitrile solution and a transparent KBr disk. It is concluded that both emitting states are of metal-to-ligand charge-transfer (MLCT) character, and despite the presence of conjugated thiophene residues, there is no indication for a low-lying pi,pi*-triplet state that promotes nonradiative decay of the excited-state manifold. A key feature of these systems is that the conjugation length imposed by the thiophene-based ligand helps to control the rate constants for both radiative and nonradiative decay from the two MLCT triplet states.  相似文献   

13.
A combination of electrochemistry, spectroelectrochemistry, and 1H NMR has been used to study the reduction and solution speciation in acetonitrile of two mononuclear Ru complexes containing the redox-active 9,11,20,22-tetraazatetrapyrido [3,2-a:2',3'-c:3' ',2' '-l:2' ',3' '-n]pentacene (tatpp) ligand. These complexes, [(bpy)2Ru(tatpp)][PF6]2 (1[PF6]2), and [(phen)2Ru(tatpp)][PF6]2 (2[PF6]2) (where bpy is 2,2'-bipyridine and phen is 1,10-phenanthroline), form pi-pi stacked dimers (e.g., pi-{1}24+ and pi-{2}24+) in solution as determined by 1H NMR studies in an extended concentration range (90 - 5000 microM) as well as via simulation of the electrochemical data. The dimerization constant for 12+ in acetonitrile is 2 x 10(4) M(-1) as determined from the NMR data. Slightly higher dimerization constants (8 x 10(4) M(-1)) were obtained via simulation of the electrochemical data and are attributed to the presence of the supporting eletrolyte. Electrochemical and spectroelectrochemical data show that the pi-pi stacked dimers are electroreduced in two consecutive steps at -0.31 and -0.47 V vs Ag/AgCl, which is assigned to the uptake of one electron by each tatpp ligand in pi-{1}24+ to give first pi-{1}23+and then pi-{1}22+. At potentials negative of -0.6 V, the electrochemical data reveal two different reaction pathways depending on the complex concentration in solution. At low concentrations (< or =20 microM), the next electroreduction occurs on a monomeric species (e.g., [(bpy)2Ru(tatpp)]+/0) showing that the doubly reduced pi-pi dimer (pi-{1}22+ and pi-{2}22+) dissociates into monomers. At high concentrations (> or =100 microM), reduction of pi-{1}22+ or pi-{2}22+ induces another dimerization reaction, which we attribute to the formation of a sigma-bond between the radical tatpp ligands and is accompanied by the appearance of a new peak in the absorption spectrum at 535 nm. This new sigma-dimer can undergo one additional tatpp based reduction to form sigma-{1}20 or sigma-{2}20, in which the tatpp-bridged assembly is the site of all four reductions. Finally, potentials negative of -1.2 V result in the electroreduction of the bpy or phen ligands for complexes 12+ or 22+, respectively. For the latter complex 22+, this process is accompanied by the formation of an electrode adsorbed species.  相似文献   

14.
The catalytic activity in asymmetric transfer hydrogenation of ketones using octahedral and half-sandwich (η5-indenyl and η6-arene) ruthenium(II) complexes containing the chiral ligand (4S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline (FcPN) has been explored. Catalytic studies with complex fac-[RuCl22(P,N)-FcPN}(PMe3)2] (1) show excellent TOF values (9600 h−1). Experiments in the presence of free FcPN, which lead to an increase in conversion rates and ee values when the catalyst is complex [Ru(η5-C9H7){κ2(P,N)-FcPN}(PPh3)][PF6] (4) have been carried out. The characterization of the new complexes mer-trans-[RuCl2{P(OMe)3}22(P,N)-FcPN}] and of the water-soluble complexes fac- and mer-trans-[RuCl2(PTA)22(P,N)-FcPN}] is also reported.  相似文献   

15.
In attempting to perturb the electronic properties of the spacer, we now describe an interesting example of Ru2+-tpy (tpy = terpyridine) complexes with 1,1′-bis(ethynyl)polyferrocenyl moiety attached directly to the 4′-position of the tpy ligand (tpy-CC-(fc)n-CC-tpy; fc = ferrocenyl;n = 2-3). Complexes of Ru2+-tpy have room-temperature luminescence in H2O/CH3CN (4/1) solution. The ground-state HOMO and LUMO energies were probed by electrochemical measurements and the excited-state photophysical properties were probed by UV-Vis absorption spectroscopy and luminescence spectroscopy. The redox behavior of [(tpy)RuII-tpy-CC-(fc)n-CC-tpy-RuII(tpy)]4+ complex is dominated by the Ru2+/Ru3+ redox couple (E1/2 from 1.35 to 1.39 V), Fe2+/Fe3+ redox couples (E1/2 from 0.4 to 1.0 V) and tpy/tpy/tpy2− redox couples (E1/2 from −1.3 to −1.5 V). Electrochemical data, UV absorption and emission spectra indicate that the π-delocalization in the spacer is enhanced by the insertion of ethynyl unit. Interestingly, the insertion of ethynyl unit into the main chain causes a dramatic increase of phosphorescence yield (1.48 × 10−4 for n = 2; 1.13 × 10−4 for n = 3), triplet lifetime (67 ns for n = 2; 24 ns for n = 3), and emission intensity. The biferrocenyl spacer can be converted into mixed-valence biferrocenium spacer, which gives a more effective π-delocalization along main chain, by selective chemical oxidation of ferrocenyl unit. In deoxygenated H2O/CH3CN (4/1) solution at 25 °C, the oxidized complex of [(tpy)RuII-tpy-CC-(fc)2-CC-tpy-RuII(tpy)]5+ is nonemissive. The presence of lower energy ferrocenium-centered excited-state provides an additional channel for excited-state decay. The mixed-valence biferrocenium center acts as an efficient quencher for the MLCT excited-state.  相似文献   

16.
A new trimethyltetrathiafulvalene (Me3TTF) derivative Me3TTF-CH=CH-py bearing a pyridyl was synthesized and coordinated to a cobalt(II) benzoate dimer, having paddlewheel core structure, leading to a complex formulated as Co2(PhCOO)4(Me3TTF-CH=CH-py)2. Single-crystal X-ray diffraction studies of the complex performed at 293 and 100 K evidenced the existence of a weak metal-metal interaction. Magnetic studies revealed an antiferromagnetic behavior, which is explained as the result of the direct exchange between metal centers.  相似文献   

17.
The present report examplifies a novel type of aromatic amine addition reactions at a ruthenium(II) complexed acetonitrile. The electrophilic cationic complex, cis-[L2Ru(CH3CN)2](ClO4)2 (1) [L = 2-(phenylazo)pyridine] reacts with aromatic primary amines only in neat to produce a violet amidinate complex, [L2Ru-N(Ar)-C(CH3)-N(Ar)]+ (2) of ruthenium(II). Along with it a blue ortho-metalated ruthenium(II) amidine complex, [L2Ru-N(H)C(CH3)-N(H)Ar]+ (3) is also formed. X-ray structures of the two representative complexes are reported. The transformation 1 → 2 is unprecedented, involves multiple steps and occurs with addition of two equivalents of ArNH2 across a coordinated nitrile function. In this complex, amidinate ligand binds to ruthenium(II) center as a σ,σ symmetrical bidentate chelate. The formation of 3 is a combination of nucleophilic amine addition and cyclometalation. 1H and 13C NMR spectra of the products are examined, which are consistent with their formulations and structures. Optical spectra and redox properties of the newly synthesized complexes are reported. Visible range spectra of 2 and 3 are dominated by moderately intense metal-to-ligand charge transfer transitions. The complexes show multiple redox responses. The anodic potential response occurs at a high positive potential, which is attributed to a Ru(II)/Ru(III) couple. The cathodic potential responses are due to reductions of the coordinated diazo ligands.  相似文献   

18.
The ruthenium(III) complex bearing benzo[h]quinoline as a cyclometalated ligand was synthesized and characterized by ESI-MS, elemental analysis, cyclic voltammetry and crystallography. The complex serves as an efficient catalyst for the aerobic oxidative dehydrogenation of benzylamines to the corresponding benzonitriles under mild conditions.  相似文献   

19.
Phosphine-pyrazolyl based tripod ligands ROCH2C(CH2Pz)2(CH2PPh2) (R = H, Me, allyl; Pz = pyrazol-1-yl) were efficiently synthesized and characterized. Reactions of these ligands with [Ru(η6-p-cymene)Cl2]2 afforded complexes of the type [Ru(η6-p-cymene)Cl2](L) (6-8) in which the ligands exhibit κ1-P-coordination to the metal center. Complex [Ru(η6-p-cymene)Cl2{Ph2PCH2C(CH2OH)(CH2Pz)2}] (6) underwent chloride-dissociation in CH2Cl2/MeCN to give complex [RuCl(η6-p-cymene){κ2(P,N)-Ph2PCH2C(CH2OH)(CH2Pz)2}][Cl] (9). Complexes 6-9 demonstrated poor to moderate catalytic activity in the transfer hydrogenation of acetophenone. All these complexes were fully characterized by analytical and spectroscopic methods and their molecular structures were determined by X-ray crystallographic study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号