首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of combination of noble metals M (Rh, Pd, Ir, Pt) and metal oxide supports S (Al2O3, SiO2, ZrO2, CeO2) on the NO + H2 reaction using planar catalysts with M/S two layered thin films on Si substrate. In this study, NO reduction ability per metal atom were evaluated with a specially designed apparatus employing pulse valves for the injection of reactant molecules onto catalysts and a time-of-flight mass spectrometer to measure multiple transient products: NH3, N2 and N2O simultaneously as well as with an atomic force microscopy to observe the surface area of metal particles. The catalytic performances of Rh and Ir catalysts were hardly affected by a choice of a metal oxide support, while Pd and Pt catalysts showed different catalytic activity and selectivity depending on the metal oxide supports. This assortment is consistent with ability to dissociate NO depending on metals without the effect of any support materials. There, the metals to the left of Rh and Ir on the periodic table favor dissociation of NO and those to the right of Pd and Pt tend to show molecular adsorption of NO. Therefore, the catalytic property of noble metals could be assorted into two groups, i.e. Rh and Ir group whose own property would mainly dominate the catalytic performance, and Pd and Pt group whose interaction with metal oxides supports would clearly contribute to the reaction of NO with H2. NO reduction activity of Pd and Pt was found to be promoted above that of Rh and Ir, provided that Pd and Pt were supported by CeO2 and ZrO2.  相似文献   

2.
《Solid State Ionics》2006,177(26-32):2205-2209
The effect of non-faradaic electrochemical modification of catalytic activity (NEMCA effect) or electrochemical promotion (EP) was investigated in the total oxidation of propane on porous Pt and Rh catalyst-electrode films interfaced to 8 mol% Y2O3-stabilized-ZrO2 (or YSZ), in the temperature range 425–520 °C and for sub-stoichiometric O2 to propane ratios. Application of either positive or negative overpotentials resulted in non-faradaic increase of the catalytic rate, by up to a factor of 4 in the case of Rh and by up to a factor of 1350 in the case of Pt. The rate increase observed in the case of Pt is among the highest ones reported so far in NEMCA studies with oxygen ion conductors as active supports.  相似文献   

3.
Recovery properties after H2S catalytic poisoning of catalytic-type gas sensor with photo-catalysts and UV radiation have been examined. Each sensing material of the sensor consists of Pd, Pt supported on γ-Al2O3 and Pd/titanate, Pt/titanate nanotubes or TiO2 particles. Pd/titanate and Pt/titanate nanotubes photo-catalyst were synthesized by hydrothermal synthesis method. All the sensors were deactivated after 500 ppm H2S exposure for 20 h. The sensors with Pd/titanate or Pt/titanate nanotubes showed regenerated voltage response under UV radiation. However the sensor with TiO2 particles showed negligible regenerated voltage response. Regenerated voltage response with Pd/titanate or Pt/titanate nanotubes may stem from location of Pd or Pt catalyst on the titanate nanotube photo-catalyst.  相似文献   

4.
《Solid State Ionics》2004,166(1-2):183-189
The Pt/yttria-stabilized cubic zirconia (YSZ) interface exposed to a reactive gas was characterised by solid electrolyte potentiometry and cyclic voltammetry. The catalytic reactions included total combustion of C3H8 and C3H6 to CO2 and H2O as well as NO reduction by C3H6 in the presence of O2 under oxygen-rich and stoichiometric conditions. The solid electrolyte potentiometry as a function of the temperature in C3Hx/O2 (with x=6 or 8) reflected the catalytic properties of Pt for C3Hx oxidation. In C3H6/NO/O2, the reduction of NO was evidenced below 300 °C. The cyclic voltammetry evidenced the formation of an oxygen chemisorbed layer on the Pt surface under anodic potential. Propane had no effect on this chemisorbed layer, whereas propene weakened significantly the strength of this Pt–O bond. Addition of NO to C3H6/O2 led to the disappearing of this chemisorbed layer. The use of solid electrolyte potentiometry in conjunction with cyclic voltammetry allowed us to determine the surface oxidation state of Pt during the catalytic reactions.  相似文献   

5.
The reduction of NO by C3H6 in the presence of oxygen, is of great environmental importance. Platinum-based catalysts are very active but not selective towards N2 production and mainly convert NO into N2O, which participates to the greenhouse effect. Moreover, their operating temperature window is quite narrow. Electrochemical promotion was used to improve platinum catalytic behaviour. Platinum was deposited on YSZ (Y2O3 — stabilised ZrO2), an O2-conductor. It was found that a negative current increased the rate of NO reduction and CO2 formation. This rate enhancement was non-Faradaic with an apparent Faradaic efficiency (Λ) close to 180 indicating the manifestation of a NEMCA effect. However, the current application had no effect on the N2 selectivity Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

6.
The catalytic activity of polycrystalline Pt deposited on Yttria Stabilized Zirconia (YSZ) for the oxidation of propane to CO2 can be affected using the effect of Non-faradaic Electrochemical Modification of Catalytic Activity (NEMCA). It was found that by applying positive overpotentials and thus, supplying O2- onto catalyst surface, up to 3.2-fold increase in the catalytic rate of C3H8 oxidation could be obtained at 365 °C. At 305 °C, no effect was evidenced. Using cyclic voltammetry and impedance spectroscopy, we have shown the modifications induced by the addition of C3H8 on the kinetics of the 02, Pt/YSZ interface in the temperature range 300–400 °C. A decrease of the coverage of adsorbed oxygen species produced electrochemically was evidenced as well as a decrease of the oxygen electrode reaction rate under anodic potential. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

7.
NOx storage and reduction (NSR) catalysts are a well-known and broadly used technology to reduce NOx emissions from combustion engines, which may also be applied for hydrogen fueled engines in the future. In this study, Pt- and Pd-based NSR-catalysts were investigated in the absence and presence of water to understand how NO oxidation as well as the storage and reduction phases are influenced by the gaseous environment with H2 as a reductant. A planar channel configuration was chosen for conducting planar laser-induced fluorescence experiments during the storage phase in addition to steady-state oxidation measurements and transient lean/rich cycles in a packed bed reactor. The presence of steam significantly decreases the NO oxidation activity of both noble metal catalysts. The Pt/BaO/Al2O3 catalyst is more active during transient lean/rich cycles, however, it suffers an activity loss during repeated cycles, whereas the activity of the Pd/BaO/Al2O3 sample is slightly more stable in the wet gas feed over time. All experiments showed a strong correlation between the NO2 formation over the catalyst and its storage capability. The influence of water in the exhaust gas on the NSR-catalysts shows a strong temperature dependency on storage and reduction of NO for both catalysts containing Pt and Pd. The storage behavior is also strongly influenced by both the experimental configurations chosen revealing the significance of the interaction of intrinsic catalytic kinetics and mass transfer in the surrounding flow field.  相似文献   

8.
The effect of electrochemical promotion of catalysis was investigated for the oxidation of propane using Pd, Ir, and Ru catalyst-electrodes sputter-deposited on YSZ disks in the temperature range of 250–450 °C. Electrophobic type behavior was observed, i.e., the catalytic reaction rate was found to increase with catalyst potential. The observed rate changes under polarization were strongly non-Faradaic and exceeded under anodic potential application the electrocatalytic rate of O2? supply to the catalyst surface, I/2F, by up to a factor of 250 for Pd, 125 for Ir, and 15 for Ru catalyst-electrodes.  相似文献   

9.
电催化CO2还原反应可以产生HCOOH和CO,目前该反应是将可再生电力转化为化学能存储在燃料中的最有前景的方法之一. SnO2作为将CO2转换为HCOOH和CO的良好催化剂,其反应发生的晶面可以是不同的. 其中(110)面的SnO2非常稳定,易于合成. 通过改变SnO2(110)的Sn:O原子比例,得到了两种典型的SnO2薄膜:完全氧化型(符合化学计量)和部分还原型. 本文研究了不同金属(Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、Os、Ir、Pt和Au)掺杂的SnO2(110),发现在CO2还原反应中这些材料的催化活性和选择性是不同的. 所有这些变化都可以通过调控(110)表面中Sn:O原子的比例来控制. 结果表明,化学计量型和部分还原型Cu/Ag掺杂的SnO2(110)对CO2还原反应具有不同的选择性. 具体而言,化学计量型的Cu/Ag掺杂的SnO2(110)倾向于产生CO(g),而部分还原型的表面倾向于产生HCOOH(g). 此外,本文还考虑了CO2还原的竞争析氢反应. 其中Ru、Rh、Pd、Os、Ir和Pt掺杂的SnO2(110)催化剂对析氢反应具有较高的活性,其他催化剂对CO2还原反应具有良好的催化作用.  相似文献   

10.
Zoltán Paál  Robert Schl?gl 《Surface science》2009,603(10-12):1793-1801
Results of electron spectroscopy (XPS and UPS) of platinum black catalyst measured in various states of the catalyst have been summarized. XPS showed up to almost 50% carbon and up to 20% oxygen on a sample stored in air. These, however, had almost no influence on the chemical state of Pt, except for the appearance of minor surface oxide. A Pt purity of ~90% could be reached by regeneration with O2 and H2. The C 1s peak contained several components from individual C atoms to graphitic and polymeric hydrocarbon layers. Thus, the active catalyst was not clean Pt but metallic Pt; the impurities exerting little influence on catalytic activity. Regeneration and deactivation led also to slight structural rearrangement, as detected by XRD. Intentional deactivation with hydrocarbon–hydrogen mixtures was monitored by XPS, UPS and catalytic tests. Correlation was found between catalytic activity and selectivity in hexane reaction and the amount – and also the chemical state – of carbon accumulated during deactivating runs. A short summary of electron spectroscopy of supported Pt catalysts is also given. The main underlying idea regards solid catalyst and reactants as a dynamic system, including also solid-state changes of the former.  相似文献   

11.
The promotion of sulfur oxides on the selective catalytic reduction (SCR) of NO by hydrocarbons in the presence of a low concentration of sulfur oxides over Ag/Al2O3 has been investigated by a flow reaction test and in situ infrared spectroscopy. When the C3H6 (or C10H22) + NO + O2 feed-flow reaction was tested, maximum NO reduction was below 30% over fresh Ag/Al2O3. After the addition of SO2 to the feed flow, conversion increased slightly. Conversion increased further after SO2 was cut-off from the feed flow. This demonstrated that the increase in NO reduction activity of the catalyst was related to SOx adsorbed on the catalyst. SOx adsorbed on the catalytic surface (1375 cm−1) was detected by IR spectroscopy and was stable within the temperature range. NCO species, as an intermediate in NO reduction, on SOx-adsorbed Ag/Al2O3 in a C3H6 + NO + O2 feed flow was observed in in situ IR spectra during the elevation of the reaction temperature from 473 to 673 K, while it was only observed at 673 K on fresh Ag/Al2O3 under the same experimental conditions. We suggest that SOx in low concentrations depressed the combustion of reductants by contaminating hydrocarbon combustion active sites on the catalyst, resulting in an increase in NO reduction efficiency of the reductants.  相似文献   

12.
The effect of non-Faradaic electrochemical modification of catalytic activity (NEMCA) or electrochemical promotion (EP) was investigated on Pt films deposited on Y2O3-stabilized-ZrO2 (YSZ), an O2− conductor, TiO2, a mixed conductor, and Nafion 117 solid polymer electrolyte (SPE), a H+ conductor and also on Pd films deposited on YSZ and β″-Al2O3 a Na+ conductor. Four catalytic systems were investigated, i.e. C2H6 oxidation on Pt/YSZ, C2H4 oxidation on Pd/YSZ and Pd/β″-Al2O3, C2H4 oxidation on Pt/TiO2 and H2 oxidation on Pt/Nafion 117 in contact with 0.1 M aqueous KOH solution. In all cases pronounced and reversible non-Faradaic electrochemical modification of catalytic rates was observed with catalytic rate enhancement up to 2000% and Faradaic efficiency values up to 5000. All reactions investigated exhibit a pronounced electrophobic behaviour which is due to the weakening of chemisorptive oxygen bond at high catalyst potentials. Ethane oxidation, however, also exhibits electrophilic behaviour at low potentials due to weakened binding of carbonaceous species on the surface. The general features of the phenomenon are similar for all four cases presented here showing that the NEMCA effect is a general, electrochemically induced, promoting catalytic phenomenon not depending on the reaction and the type of supporting electrolyte. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10–16, 1995  相似文献   

13.
The selective catalytic reduction of NO by propylene or CO in the presence of excess oxygen is a system of great technological importance. The effect of Electrochemical Promotion (or Non-faradaic Electrochemical Modification of Catalytic Activity — NEMCA) was used to promote this reaction (C3H6 or CO/NO/O2) on Rh/YSZ catalyst-electrodes. It was found that both the catalytic activity and the selectivity of the Rh catalyst-electrode is affected dramatically upon varying its potential with respect to a Au pseudoreference electrode. Catalytic rate enhancements up to 15000% and 6000% were observed in the case of NO reduction by propylene, while the product selectivity to N2 production is affected significantly (up to 200%) upon positive potential application. Remarkable promotion of the catalytic activity was also observed in the case of NO reduction by CO, since up to 20-fold increases both in catalytic rates and in NO conversion were obtained under NEMCA conditions. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

14.
The effects of transition metals (Cr, Mn, Fe, Co and Ni) on the catalytic properties of Pd/Ce-Zr/Al2O3 catalyst for methane combustion have been investigated. The supported Pd catalysts are characterized by BET, XRD, TEM, TPR, TPO and TPSR measurements. Activity tests in methane combustion show that Pd/Ce-Zr-Ni/Al2O3 has the highest catalytic activity and thermal stability among all catalysts. The results of TEM show that the addition of Ni to Pd/Ce-Zr/Al2O3 increases the dispersion of Pd component and inhibits the site growth. The results of TPO and TPSR show that the addition of Ni inhibits the decomposition of PdO particles and improves the reduction-reoxidation properties of the active PdO species, which increases the catalytic activity and thermal stability of the Pd/Ce-Zr/Al2O3 catalyst.  相似文献   

15.
Ultra accelerated quantum chemical molecular dynamics method (UA-QCMD) was used to study the dynamics of the hydrogen spillover process on Pt/CeO2 catalyst surface for the first time. The direct observation of dissociative adsorption of hydrogen on Pt/CeO2 catalyst surface as well as the diffusion of dissociative hydrogen from the Pt/CeO2 catalyst surface was simulated. The diffusion of the hydrogen atom in the gas phase explains the high reactivity observed in the hydrogen spillover process. Chemical changes, change of adsorption states and structural changes were investigated. It was observed that parallel adsorption of hydrogen facilitates the dissociative adsorption leading to hydrogen desorption. Impact with perpendicular adsorption of hydrogen causes the molecular adsorption on the surface, which decelerates the hydrogen spillover. The present study also indicates that the CeO2 support has strong interaction with Pt catalyst, which may cause an increase in Pt activity as well as enhancement of the metal catalyst dispersions and hence increasing the rate of hydrogen spillover reaction.  相似文献   

16.
Catalytic ozonation is a promising method for simultaneous removal of NOx and Cl-VOCs, but needs to clarify their interaction mechanism and the influence of catalyst acidity. In this paper, the simultaneous catalytic ozonation of NO and dichloromethane (DCM) on Mn/H-ZSM-5 molecular sieve catalysts were investigated experimentally. Results show that the overall acidity, acid sites type and intensity have a significant impact on the degradation efficiency, the conversion path of Cl element, and the interaction of NO/DCM adsorption-degradation. Nevertheless, regardless of catalysts, NO could be preferentially oxidized by ozone to generate NO2 in co-ozonation process, which inhibited and even shielded DCM ozonation at O3/DCM ratio <1.7. In addition, the highly active oxidizing species such as NO3/N2O5, produced by the deep ozonation of NO2, exhibited a synergistic effect on the conversion of DCM and intermediates, which in turn weakened NO2 deep oxidation. Specifically, NO addition caused a general decrease in the HCl selectivity, and a slight increase in the CHCl3 selectivity of all samples, while the Cl2 selectivity was determined by the overall catalyst acidity. The samples with higher overall acidity exhibited lower activity for DCM degradation. In particular, for samples with the weak overall acidity but strong acid sites, the sum selectivity of HCl, Cl2, and CHCl3 was significantly improved under the interplay effect of NO, indicating that strong acidic sites were beneficial to the complete degradation of DCM. In-situ DRIFTS revealed that aldehydes and carboxylates were the key intermediates of DCM ozonation. In the co-ozonation, NO and its oxidation products (such as nitrates) could promote the formation and conversion of these intermediates, and further converted into CO and CO2 by the active oxidant from ozone. Finally, the interference of H2O and SO2 on the NO/DCM co-ozonation were revealed.  相似文献   

17.
Monometallic Pt and Rh and bimetallic PtRh catalysts with a highly dispersed noble metal weight loading of ca. 1 wt% were produced via the direct deposition of nanoparticles on different SiO2 supports by means of pulsed ultra-violet (248 nm) excimer laser ablation of Pt, Rh bulk metal and PtRh alloy targets. Backscattered electron microscopy (BSE), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were employed to characterize the deposited nanoparticles, which were found to exhibit narrow size distribution centred around 2.5 nm. The catalytic activities for lean NO x reduction of the monometallic and bimetallic catalyst samples were investigated in a flow reactor setup in the temperature range 100–400°C using a test gas mixture representative of oxygen rich diesel engine exhaust gas. For comparison a Rh/SiO2 reference catalyst prepared by a conventional impregnation method was also tested. Further experiments were performed in which PtRh nanoparticles were deposited on a Rh/SiO2 reference catalyst sample to study the possibility for controlled modification of its activity. The catalytic activity measurements revealed that among the samples solely prepared by laser deposition the PtRh–SiO2 nanoparticle catalyst showed the highest activity for NO x reduction at low temperatures 100–300°C. In addition, it could be demonstrated that the initially low NO x reduction activity and the N2 selectivity of the Rh/SiO2 reference catalyst sample for temperatures below 250°C can be enhanced by post laser deposition of PtRh nanoparticles.  相似文献   

18.
A Pd/WO3/C nanocomposite with 3-aminopropyltrimethoxysilane (APTMS)-functionalized tungsten oxide nanosheets (Pd/WO3/C-APTMS) was synthesized and applied as the efficient anode catalyst for direct formic acid fuel cells (DFAFCs). The mechanism for synthesizing the nanocomposite is as follows: initially, [PdCl4]2? was assembled onto the tungsten oxide nanosheets modified with APTMS. Following this, Pd nanoparticles were reduced via traditional impregnation reduction of [PdCl4]2? with NaBH4. The transmission electron microscope (TEM) images revealed that the Pd nanoparticles were uniformly dispersed on WO3 nanosheets and were approximately 2.7 nm in size. The electrochemical test results showed that enhanced electrocatalytic activity for the formic acid oxidation reaction (FAOR) was obtained on the Pd/WO3/C catalyst compared with Pd/C. The higher electrocatalytic activity might be attributed to the uniform distribution of Pd with smaller particles. Furthermore, it is likely that the improvement in catalytic stability for the Pd/WO3/C catalyst is due to the hydrogen spillover effect of WO3 particles. These results indicate that this novel Pd/WO3/C-APTMS nanocomposite exhibits promising potential for use as an anode electrocatalyst in DFAFCs.  相似文献   

19.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

20.
The changes in work function φ upon adsorption of C2H4 on clean film surfaces of six fcc metals (Ni, Pd, Pt, Cu, Au and Al) have been followed by means of photoelectron emission at 293 K. A marked difference was observed in the behaviour between Ni, Pd and Al on the one side and on Cu, Au and Pt on the other side: while with Ni, Pd and Al, φ as a function of coverage goes through a maximum, with Cu, Au and Pt, φ only decreases. In the discussion, the data obtained by work function measurements are related to other literature data. Several films covered with C2H4species were also submitted to a heat treatment while in other experiments H2 was admitted to the surface covered by C2H4 species. In some experiments C2h4 was admitted to surfaces covered by H2. In all cases φ was measured. The experiments reveal that C2h4is absorbed only reversibly on Cu and Au. On Ni, Pd and Pt, C2H4 is adsorbed initially with dissociation and this leads to an increase in φ on Ni and Pd and a decrease on Pt. Hydrogenated reactive species contribute to the lowering of φ observed with Ni, Pd and Pt. As with Cu and Au also on Ni, Pd and Pt a weakly bound C2h4is observed which leads to a decrease in φ as well. The behaviour of φ indicates that upon Al, C2h4 adsorbs first dissociatively to a small extent, while the weakly bound C2H4species act as intermediates for strongly adsorbed species which were observed after some time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号