首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen(GO2/GH2) as propellants. During the combustion process, several spatially and time- resolved non-intrusive optical techniques, such as OH planar laser induced fluorescence(PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.  相似文献   

2.
张庆虎  朱涛  易仕和  吴岸平 《中国物理 B》2016,25(5):54701-054701
The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step(FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering(NPLS)and particle image velocimetry(PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness.  相似文献   

3.
李洋  贾敏  吴云  李应红  宗豪华  宋慧敏  梁华 《中国物理 B》2016,25(9):95205-095205
Plasma synthetic jet actuator(PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity.In this paper,the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 k Pa to 100 k Pa.The energy consumed by the PSJA is roughly the same for all the pressure levels.Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures.The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases.The peak jet front velocity always appears at the first appearance of a jet,and it decreases gradually with the increase of the air pressure.A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 k Pa.The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures,and it drops with the rising of the air pressure.High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 k Pa.  相似文献   

4.
张庆虎  易仕和  何霖  朱杨柱  陈植 《中国物理 B》2013,22(11):114703-114703
The coherent structures of flow over a double elliptic surface are experimentally investigated in a supersonic lownoise wind tunnel at Mach number 3 using nano-tracer planar laser scattering(NPLS)and particle image velocimetry(PIV)techniques.High spatiotemporal resolution images and velocity fields of both laminar and turbulent inflows over the test model are captured.Based on the time-correlation images,the spatial and temporal evolutionary characteristics of the coherent structures are investigated.The flow structures in the NPLS images are in good agreement with the velocity fluctuation fields by PIV.From statistically significant ensembles,spatial correlation analysis of both cases is performed to quantify the mean size and the orientation of coherent structures.The results indicate that the mean structure is elliptical in shape and the structural angles in the separated region of laminar inflow are slightly smaller than that of turbulent inflow.Moreover,the structural angles of both cases increase with their distance away from the wall.  相似文献   

5.
The possibility of using commercial PIV equipment combined with schlieren optics to measure the velocity fields of turbulent flows is explored. Given a sufficiently high Reynolds number and adequate refractive flow differences, turbulent eddies can serve as the PIV “particles” in a schlieren image or shadowgram. The PIV software analyzes motion between consecutive schlieren or shadowgraph frames to obtain velocity fields. Velocimetry examples of an axisymmetric sonic helium jet in air and a 2D turbulent boundary layer at Mach 3 are shown. Due to optical path integration, axisymmetric flows require the inverse Abel transform to extract center-plane velocity data. Conditions for optimum schlieren sensitivity are examined. In its present embodiment, “schlieren PIV” is not useful for laminar flows nor for fully 3D flows. Otherwise it functions much like standard PIV under conditions where individual particles are not resolved and velocimetry is instead based on correlation of the motion of turbulent structures. “Schlieren PIV” shows significant promise for general refractive turbulent flow velocimetry if its integrative nature can be overcome through sharp-focusing optics.  相似文献   

6.
Ingleby P  Wright WM 《Ultrasonics》2002,40(1-8):507-511
Air-coupled ultrasonic capacitance transducers operating at frequencies of up to 1 MHz have been employed in a fan-beam configuration for the cross-sectional tomographic imaging of temperature fields and flow fields in air, and the location of solid objects. Separate transmitter and receiver transducers were manufactured using thin polymer dielectric membranes and polished metal backplates, and used to acquire through-transmission data. The fan-beam reconstruction was developed in LabVIEW using a re-bin routine combined with a filtered backprojection algorithm and a difference technique to generate the cross-sectional images. The system was first used to reconstruct images showing the locations of solid objects positioned within the scanned region through interpretation of the arrival time of the transmitted ultrasound. The technique was then extended to image the temperature fields produced in air above a small heat source and the flow field produced by a nozzle connected to a regulated compressed air source. Reconstructed temperatures were within 4% of the measured background air temperature and 9% of the air temperature measured above the heat source. Reconstructed images of the flow field above a small nozzle were also presented, showing that the horizontal component of the flow velocity could be resolved using this method.  相似文献   

7.
The coherent structures of flow over a compression elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach Number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spacial resolution images and the average velocity profiles of both laminar inflow and turbulent inflow over the testing model were captured. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and orientation of large structures. The results indicate that the mean structure is elliptical in shape and structure angles in separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structure angle of both cases increases with its distance away from from the wall. POD analysis of velocity and vorticity fields is performed for both cases. The energy portion of the first mode for the velocity data is much larger than that for the vorticity field. For vorticity decompositions, the contribution from the first mode for the laminar inflow is slightly larger than that for the turbulent inflow and the cumulative contributions for laminar inflow converges slightly faster than that for turbulent inflow  相似文献   

8.
The flow-induced instabilities of a fairly general class of compliant coatings are investigated theoretically. The coatings are of finite length and consist of elastic plates or membranes stretched over a fluid substrate having a density which may be different from the main flow. Provision is also made for the plate to be backed by an elastic foundation of arbitrary spring stiffness. Fairly standard aeroelastic methods are followed. The aerodynamic forces generated by the main flow are calculated by using thin aerofoil theory with a correction factor to allow for the presence of a boundary layer. The pressure induced in the substrate fluid is calculated by assuming potential flow and applying the method of images. A single-mode analysis shows that coatings with laminar boundary layers suffer a divergence-type instability in contrast to turbulent boundary layers which always give rise to a flutter-type instability with a higher critical velocity. The order of the most dangerous mode is calculated and found to rise with an increase in equivalent spring stiffness for fixed tension or flexural rigidity. Results are presented for plates and membrane coatings with an air stream over air and water substrates. Taking account of the substrate fluid dynamics reduces the growth rate of the instability by an order of magnitude and completely suppresses flutter with water substrates. Single-, double- and triple-mode analyses are carried out and the results compared. The critical velocity is adequately predicted by single-mode analysis but a coupling of odd and even modes can lead to flutter even with a laminar boundary layer.  相似文献   

9.
激波与层流/湍流边界层相互作用实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
全鹏程  易仕和  武宇  朱杨柱  陈植 《物理学报》2014,63(8):84703-084703
在超声速风洞中,分别对层流和湍流来流条件下的边界层和斜激波(激波强度足以引起流动分离)相互干扰进行了实验研究,利用纳米粒子示踪平面激光散射(NPLS)技术获得了两种条件下流场的精细结构图像;利用粒子图像测速(PIV)技术获得了两种条件下流场的速度场和涡量场;综合运用NPLS结果和PIV结果对比分析了两种流动的瞬时流动结构和时间相关性,实验结果表明:层流边界层内的分离区呈现出狭长的条状,而湍流边界层内分离区呈现出较规则的椭圆;在入射激波上游距入射点较远的位置,层流边界层外围拟序结构会诱导出一系列压缩波系,进而汇聚成空间位置不稳定的诱导激波,而湍流边界层则是在入射激波上游较近的地方直接形成较强且稳定的诱导激波;在入射激波下游,层流边界层内的膨胀区域较小且急促,膨胀后产生的再附激波很弱,而湍流边界层内的膨胀区域较大,膨胀后产生的激波较强。  相似文献   

10.

Abstract  

An experimental study to evaluate dynamic structures of flow motion and turbulence characteristics in bubble-driven water flow in a rectangular tank with a varying flow rate of compressed air is conducted. Liquid flow fields are measured by time-resolved particle image velocimetry (PIV) with fluorescent tracer particles to eliminate diffused reflections, and by an image intensifier to acquire enhanced clean particle images. By proper orthogonal decomposition (POD) analysis, the energy distributions of spatial and temporal modes are acquired. Time-averaged velocity and turbulent kinetic energy distributions are varied with the air flow rates. With increasing Reynolds number, bubble-induced turbulent motion becomes dominant rather than the recirculating flow near the side wall. Detailed spatial structures and the unsteady behavior of dominant dynamic modes associated with turbulent kinetic energy distributions are addressed.  相似文献   

11.
The image system for the method of regularized Stokeslets is developed and implemented. The method uses smooth localized functions to approximate a delta distribution in the derivation of the fluid flow due to a concentrated force. In order to satisfy zero-flow boundary conditions at a plane wall, the method of images derived for a standard (singular) Stokeslet is extended to give exact cancellation of the regularized flow at the wall. As the regularization parameter vanishes, the expressions reduce to the known images for singular Stokeslets. The advantage of the regularized method is that it gives bounded velocity fields even for isolated forces or for distributions of forces along curves. These are useful in the simulation of ciliary beats, flagellar motion, and particle suspensions. The expression relating force and velocity can be inverted to find the forces that generate a given velocity boundary condition. The latter is exemplified by modeling a cilium as a filament moving in a three-dimensional flow. The cilium velocity at various times is constructed from known data and used to determine the force field along the filament. Those forces can then reproduce the flow everywhere. The validity of the method is evaluated by computing the drag on a sphere moving near a wall. Comparisons with known expressions for the drag show that the method gives accurate results for spheres even within a distance from the wall equal to the surface discretization size.  相似文献   

12.
13.
Experimental images of detonation fronts are made for several fuel-oxidizer mixtures, including hydrocarbon–air systems. Schlieren and planar laser induced fluorescence techniques are used to image both the shock configurations and the OH reaction front structure in a single experiment. The experiments are carried out in a narrow rectangular channel. The degree of instability of detonation fronts in different mixtures is evaluated by comparing calculated mixture parameters with the longitudinal neutral stability curve. The images reveal that the structure of the front increases dramatically in complexity as the mixture parameters move away from the neutral stability curve into the unstable region. Of the mixtures studied, nitrogen-diluted hydrocarbon mixtures are predicted to be the most unstable, and these show the greatest degree of wrinkling in the shock and OH fronts, with distortion occurring over a wide range of spatial scales. In the most unstable cases, separation of the shock and OH front occurs, and localized explosions in these regions are observed in a high-speed schlieren movie. This is in dramatic contrast to the weakly unstable waves that have smooth reaction fronts and quasi-steady reaction zones with no evidence of localized explosions. A key feature of highly unstable waves is very fine scale wrinkling of the OH and shock fronts, which is absent in the low-activation energy cases. This may be due to the superposition of cellular structures with a wide range of cell sizes. In contrast to soot foils, images of the OH front have a more stochastic appearance, and organized cellular structure is not as apparent.  相似文献   

14.
This study investigates the influence of large-scale flow features, including flow structure and velocity magnitude, on the early-burn period variability in a homogenous-charge spark-ignited engine fueled with premixed propane-air mixture. Particle image velocimetry and in-cylinder pressure measurement data from a previous study - were processed to enable simultaneous flow characterization and flame-front tracking as well as apparent heat-release analysis. By combining probability analysis of flame development with conditional sampling of fast and slow early-burn cycles using 10% fuel mass fraction burned, it is shown that an undesirable flow structure produces an asymmetric flame development at the initial flame growth period. This asymmetric flame structure persists through the whole initial-to-turbulent transition period until the flame becomes fully turbulent. The undesirable flow condition is characterized by large-scale convective flows near spark plug rather than flows that lead to increased flame spread in multiple directions. The simultaneous flow and flame characterization enables the quantifications of flame-front propagation speed, unburned fuel-air mixture velocity ahead of flame front and local burning velocity at flame surface. Here the local burning velocity is referred to as laminar or turbulent flame speed. A simplified approach is introduced to derive integrated values for these quantities per crank-angle-degree, enabling the quantitative comparison of the trend-wise difference in these integrated metrics between fast and slow early-burn cycles. It is revealed that for the transition period, the CCV in the velocity magnitude of unburned fuel-air mixture ahead of the flame front accounts for nearly 50% to the variability of flame propagation speed. The burning velocity provides the remaining source of the flame propagation variability in this period. The flame propagation variations in the initial flame growth and fully turbulent periods are smaller than those in the transition period and are primarily dependent on the variability of large-scale flow features.  相似文献   

15.
This paper proposes a method which determines the optimum grid size for interpolated velocimetry data, without making any priori assumptions about the velocity fields, the system used or analysis method. The method employs condition number as the main criterion for deciding the adequate grid size for a given data set. Data sets displayed accordingly are directly comparable, independently of differing experimental parameters or data processing methods. The discussion is based on computational fluid dynamics (CFD) data of flow past the near wake of a cylinder from which simulated PIV images were generated. These images were analysed with the proposed method and the velocity estimates compared to the CFD data. The method was also applied to a sample PIV image of turbulent flow in a baffled tube.  相似文献   

16.
Two-dimensional velocity distributions outside a Mach 2.0 supersonic nozzle have been investigated using a digital particle im age velocimetry (PIV). Mean velocities , vor ticity field and volume dilatation field were obtained from PIV images using 0 .33 μm titanium dioxide (TiO2) particle. The seeding particle of larger size , 1.4 μrn Ti02, was also used for the experimental comparison of velocity lag downstream of shock waves. The results have been compared and analyzed with schlieren photographs for the locations of shock waves and over-expanded shock structure to inspect possibilities and limits of a PIV technique to over-expanded supersonic flows. It is found that although the quantitative velocity measurement using PIV on over-expanded supersonic flows with large velocity and pressure gradients is limited, the locations of normal shock and oblique shock waves can be resolved by the axial/radial velocity fields, and over-expanded shock structure can be predicted by vorticity field and volume dilatation field which are acquired from the spatial differential of the velocity field.  相似文献   

17.
The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.  相似文献   

18.
The system for Particle Image Velocimetry (PIV) measurements in the flow with superimposed pulsations of the fluid (air) has been developed. Measurements of velocity and vorticity fields in a smooth duct in certain phases of superimposed pulsations have been performed. Statistics of a turbulent pulsating flow: velocity profiles, turbulent pulsations, and Reynolds stresses has been obtained.  相似文献   

19.
The structure of detonation waves propagating through the annular channel of an optically accessible non-premixed rotating detonation engine (RDE) are investigated using mid-infrared imaging. The RDE is operated on hydrogen–air mixtures for a range of air mass flow rates and equivalence ratios. Instantaneous images of the radiation intensity from water vapor are acquired using a mid-infrared camera and a band-pass filter (2.890?±?0.033?µm). The instantaneous mid-infrared images reveal the stochastic nature of the detonation wave structure, position and angle of oblique and reflected shock waves, presence of shear layer separating products from the previous and current cycles, and extent of mixing between the reactants and products in the reactant fill zone in front of the detonation wave. The images show negligible signal directly in front of the detonation waves suggesting that there is minimal mixing between the reactants and products from the previous cycle ahead of the detonation wave for most operating conditions. The mid-infrared images provide insights useful for improving fundamental understanding of the detonation structure in RDEs and benchmark data for evaluating modeling and simulation results of RDEs.  相似文献   

20.
To analyze the complex three-dimensional flow structure of an axial flow fan and determine the validity of its application, PIV is used to provide detailed space and time resolved experimental data for understanding and control of flow field. The high resolution stereoscopic PIV system was successfully employed in this study for the investigation of flow structure around the axial flow fan. Using the once-per-revolution signal from the rotor, image fields were captured at a fixed position of the blades and hence provides the ability to do phase-averaging. The three-dimensional instantaneous velocity fields, phase-averaged velocity fields, instantaneous and mean vorticity distributions of the stereoscopic PIV measurement results were represented at typical planes of the flow field. Phaseaveraged velocity fields were calculated based on 200 frames of the instantaneous stereoscopic PIV measurement results. From the velocity distribution, the vorticity and turbulent intensity distribution, which are known to be major factors of fan noise, were calculated and its diffusion was discussed as they travel downstream. From the reconstructed three-dimensional velocity iso-surface at 8 cross planes of the outlet flow fields, the three-dimensional features can be seen clearly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号