首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The purpose of this paper was to investigate the effect of ultrasound-ionic liquid (IL) pretreatment on the enzymatic and acid hydrolysis of the sugarcane bagasse and wheat straw. The lignocellulosic biomass was dissociated in ILs ([Bmim]Cl and [Bmim]AOC) aided by ultrasound waves. Sonication was performed at different frequencies (20, 28, 35, 40, and 50 kHz), a power of 100 W, a time of 30 min and a temperature of 80 °C. The changes in the structure and crystallinity of the cellulose were studied by Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The amounts of the total reducing sugars, glucose, cellobiose, xylose and arabinose in the hydrolysates were determined. The results of FT-IR, XRD and TGA revealed that the structure of cellulose of both biomass samples remained intact after the pretreatment, but the crystallinity decreased. The enzymatic and acid hydrolysis of the biomass samples pretreated with the ultrasound-IL result in higher yields of the reducing sugars compared with the IL-pretreated sample. Enzymatic hydrolysis of bagasse and wheat straw pretreated with [Bmim]Cl-ultrasound resulted in maximal yields of glucose at 20 kHz (40.32% and 53.17%) and acid hydrolysis resulted in maximal yields of glucose at 40 kHz (33.32% and 48.07%). Enzymatic hydrolysis of bagasse and wheat straw pretreated with [Bmim]OAc-ultrasound show maximal yields of glucose at 28 kHz and acid hydrolysis at 50 kHz. Combination of ultrasound with [Bmim]OAc is more effective than [Bmim]Cl in terms of the yields of reducing sugar.  相似文献   

2.
The impact of ultrasound (US) reactor design on cavitation intensity distribution and disintegration efficiency was studied for sewage sludge pre-treatment, using a US flatbed reactor of variable reaction chamber height (RCH, 20–100 mm). Mapping of cavitation intensity and treatment effects was conducted using (i) hydrophone measurements, (ii) aluminum foil tests, and (iii) soluble chemical oxygen demand (COD) analyses. The overall disintegration efficiency was evaluated based on average COD solubilization. The impact of flow on treatment (in)homogeneity was additionally examined using computational fluid dynamics (CFD). Results of all measurement techniques suggest that small RCHs (20 mm, for instance) enable uniform and intense treatments, while large RCHs, which are subjected to strong sound wave attenuation, entail inhomogeneous treatments where large fractions of substrate are no longer exposed to notable cavitation activity. For instance, COD solubilization (relative to alkaline hydrolysis) measured in the channel center dropped from 6.4% to zero as RCH widened from 20 mm to 100 mm. Flow-through sonication further aggravates treatment inhomogeneity due to the high flow rates in the low-cavitation channel centers. Overall disintegration efficiency declined with increasing RCH, showing a drop in average COD solubilization by 73% from RCH = 20 mm to RCH = 100 mm. The drop correlated with average cavitation noise levels (R2 = 0.82), indicating that hydrophone measurements may be a suitable tool for US reactor design optimization. Overall, results suggest that reactor geometry has a critical impact on both treatment (in)homogeneity and treatment efficiency and that equal specific energy inputs do not imply equal US treatments.  相似文献   

3.
Sugarcane bagasse (SCB) is an abundant agricultural waste in China and the conversion of the waste into plethora of useful resources is very vital. To achieve this, fractionation of the waste is highly important in the biomass biorefinery. The present study aims at investigating the synergistic role of deep eutectic solvents (DES) with sweeping frequency ultrasound (SFUS) and fixed frequency ultrasound (FFUS) in the fractionation of SCB to enhance the enzymatic saccharification process. Therefore, the effects of ultrasound (US) and DES conditions on the pretreatment efficiency were investigated. Under optimum SCB pretreatment conditions, FFUS (40 kHz, 60 min) + DES (choline chloride (ChCl)-lactic acid (LA), 120 °C, 3 h) and SFUS (40 kHz, 60 min) + DES (ChCl-LA, 120 °C, 3 h), the lignin removal rates were 80.13 and 85.62%, respectively. The hemicellulose removal rates were 78.08 and 90.46%, respectively; and the contents of glucose, xylose and arabinose in the liquid fractions after FFUS + DES pretreatment were 7.07, 17.95 and 3.01%, respectively. However, the yield of glucose, xylose, and cellobiose after enzymatic hydrolysis of the SFUS + DES pretreated SCB were 86.76, 38.68, and 20.76%. Analytical studies revealed that the SFUS + DES pretreatment can effectively destroy the ultrastructure of SCB and reduce the crystallinity of cellulose. Furthermore, the mechanism of pretreatment with SFUS + DES was proposed, which confirmed the excellent performance of SFUS + DES. Thus, the application of SFUS + DES pretreatment was able to improve the removal of lignin and hemicellulose from SCBs.  相似文献   

4.
A hydrodynamic cavitation reactor (Ecowirl) based on swirling jet-induced cavitation has been used in order to allow the degradation of a waste dye aqueous solution (Rhodamine B, RhB). Cavitation generated by Ecowirl reactor was directly compared with cavitation generated by using multiple hole orifice plates. The effects of operating conditions and parameters such as pressure, pH of dye solution, initial concentration of RhB and geometry of the cavitating devices on the degradation rate of RhB were discussed. In similar operative conditions, higher extents of degradation (ED) were obtained using Ecowirl reactor rather than orifice plate. An increase in the ED from 8.6% to 14.7% was observed moving from hole orifice plates to Ecowirl reactor. Intensification in ED of RhB by using hydrodynamic cavitation in presence of NaOCl as additive has been studied. It was found that the decolourization was most efficient for the combination of hydrodynamic cavitation and chemical oxidation as compared to chemical oxidation and hydrodynamic cavitation alone. The value of ED of 83.4% was reached in 37 min using Ecowirl combined with NaOCl (4.0 mg L−1) as compared to the 100 min needed by only mixing NaOCl at the same concentration. At last, the energetic consumptions of the cavitation devices have been evaluated. Increasing the ED and reducing the treatment time, Ecowirl reactor resulted to be more energy efficient as compared to hole orifice plates, Venturi and other swirling jet-induced cavitation devices, as reported in literature.  相似文献   

5.
The primary purpose of this study is to investigate the effects of hydrodynamic and acoustic cavitation (HAC) on the leaching efficiency of tungsten. The aim is to reduce energy use and to improve the recovery rate. The goal is also to carry out a leaching process at a much lower temperature than in an autoclave process that is currently used in the industry. Energy-efficient initiation and collapse of cavitation bubbles require optimization of (i) vibro-acoustic response of the reactor structure, (ii) multiple excitation frequencies adapted to the optimized reactor geometry, and (iii) hydrodynamic cavitation with respect to orifice geometry and flow conditions. The objective is to modify and apply a previously in house developed high power cavitation reactor in order to recover tungsten by leaching of the dissolution of scheelite in sodium hydroxide. In this process, various experimental conditions like dual-frequency excitation, different orifice geometry have been investigated. The numerically optimized reactor concept was excited by two frequencies 23 kHz and 3943 kHz in various flow conditions. The effects of leaching time, leaching temperature, ultrasonic power and geometry of orifice plates have been studied. The leaching temperature was varied from 40 °C to 80 °C. The concentration of leaching reagent sodium hydroxide (NaOH) was 10 mol/L.The results were compared to conventional chemical leaching. Energy supplement with acoustic cavitation of 130 kWh/kg concentrate resulted in a leaching recovery of tungsten (WO3) of 71.5%, compared to 36.7% obtained in absence of ultrasound. The results confirm that the method developed is energy efficient and gives a recovery rate potentially better than current autoclave technology.  相似文献   

6.
The aim of this work is to perform design and optimization of a cavitating device based on CFD simulation. A set of operational and geometrical parameters such as convergence angle, divergence angle, length of throat, and inlet pressure that can affect the hydrodynamic cavitation phenomenon generating in a Venturi are evaluated through CFD simulation and experimental approaches. Response surface methodology (RSM) was employed to achieve the optimum geometrical configuration. The CFD results show that the maximum cavitation zone in the Venturi can be obtained when half angle of the convergence section, throat length and half angle of the divergence section are 22.7°, 4 mm, and 6.5°, respectively. A maximum decolorization of 38.8% has been obtained using the designed Venturi at cavitation number (Cv) of 0.12. Additionally, the results were compared to that of various orifice plates. A decolorization of 26.2% using 33 holes orifice plate and 11.55% in one hole orifice plate approved the superiority of the designed Venturi.  相似文献   

7.
A low pressure pilot scale hydrodynamic cavitation (HC) reactor with 30 L volume, using fixed scrap iron sheets, as the heterogeneous catalyst, with no external source of H2O2 was devised to investigate the effects of operating parameters of the HC reactor performance. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The reactor optimization was done based upon the extent of decolorization (ED) of aqueous solution of Rhodamine B (RhB). To have a perfect study on the pertinent parameters of the heterogeneous catalyzed HC reactor, the following cases as, the effects of scrap iron sheets, inlet pressure (2.4–5.8 bar), the distance between orifice plates and catalyst sheets (submerged and inline located orifice plates), back-pressure (2–6 bar), orifice plates type (4 various orifice plates), pH (2–10) and initial RhB concentration (2–14 mg L?1) have been investigated. The results showed that the highest cavitational yield can be obtained at pH 3 and initial dye concentration of 10 mg L?1. Also, an increase in the inlet pressure would lead to an increase in the ED. In addition, it was found that using the deeper holes (thicker orifice plates) would lead to lower ED, and holes with larger diameter would lead to the higher ED in the same cross-sectional area, but in the same holes’ diameters, higher cross-sectional area leads to the lower ED. The submerged operation mode showed a greater cavitational effects rather than the inline mode. Also, for the inline mode, the optimum value of 3 bar was obtained for the back-pressure condition in the system. Moreover, according to the analysis of changes in the UV–Vis spectra of RhB, both degradation of RhB chromophore structure and N-deethylation were occurred during the catalyzed HC process.  相似文献   

8.
This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75 °C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography–mass spectrometry (GC–MS) analysis.  相似文献   

9.
Whey protein isolate (WPI) hydrolysates have higher solubility in aqueous phase and enhanced biological properties. Hydrolysis of WPI was optimized using operating pressure (ΔP, bar), number of passes (N), and WPI concentration (C, %) as deciding parameters in hydrodynamic cavitation treatment. The optimum conditions for generation of WPI hydrolysate with full factorial design were 8 bar, 28 passes, and 4.5% WPI concentration yielding 32.69 ± 1.22 mg/mL soluble proteins. WPI hydrolysate showed alterations in binding capacity over WPI. SDS-PAGE and particle size analysis confirmed the hydrolysis of WPI. Spectroscopic, thermal and crystallinity analyses showed typical properties of proteins with slight variations after hydrodynamic cavitation treatment. ABTS, DPPH and FRAP assays of WPI hydrolysate showed 7–66, 9–149, and 0.038–0.272 µmol/mL GAE at 1–10, 0.25–4, and 3–30 mg/mL concentration, respectively. Further, a considerable enhancement in fresh weight, chlorophyll, carotenoids, reducing sugars, total soluble sugars, soluble proteins content and total phenolics content was noticed during in vitro growth of sugarcane in WPI hydrolysate supplemented medium at 50–200 mg/L concentration over the control. The process cost (INR/kg) to hydrolyze WPI was also calculated.  相似文献   

10.
Low-frequency ultrasonics is a potential technology to reduce the hydrolysis phase period in anaerobic digestion process. In this study, the influence of combined low frequency ultrasonics and micro-aerobic (MA) pretreatment on sewage sludge solubilization, enzyme activity and anaerobic digestion were assessed. Initially, the effect of ultrasonic density (0.012, 0.014, 0.016, 0.018, 0.1, 0.12 and 0.14 W/mL) and irradiation time (1, 3, 5, 8, 9, 10 and 12 min) of 20 kHz frequency waves were investigated. Accordingly, the effect of micro-aerobic pretreatment (Air flow rate (AFR) = 0.1, 0.2, 0.3 and 0.5 VVM) within 20, 30, 40.48 and 60 h were examined. In addition, the effect of combined pretreatment on COD solubilization, lipase enzyme activation, ATP, percentage of live bacteria and methane gas production during the anaerobic process were examined. The results showed that the highest lipase activity (14.9 Umol/mL) was obtained under the effect of ultrasonic density of 0.1 W/ml within 9 min. The highest solubilization (65%) was observed under optimal micro-aerobic conditions: AFR = 0.2 (VVM) and micro-aerobic time: 40 h. Combined ultrasonic and micro-aerobic (US + MA) pretreatment increases the solubilization (70%), microbial activity (2080%) and lipase enzymatic activity (129%) compared to individual pretreatment. The Biogas production during anaerobic digestion pretreated with combined methods increased by 193% compared to the control, while the elevated values of biogas production in reactors pretreated by ultrasonic and micro-aerobic pretreatment alone were observed to be 101% and 165%, respectively. The net energy in reactor with the combined pre-treatment methods was calculated to be 1.26 kWh, while this value for control, pretreated ultrasonic and micro-aerobic reactors were obtained to be 0.56, 0.67 and 1.2 kWh, respectively.  相似文献   

11.
The present work demonstrates the application of a hydrodynamic cavitation reactor for the synthesis of biodiesel with used frying oil as a feedstock. The synthesis involved the transesterification of used frying oil (UFO) with methanol in the presence of potassium hydroxide as a catalyst. The effect of geometry and upstream pressure of a cavitating orifice plate on the rate of transesterification reaction has been studied. It is observed that the micro level turbulence created by hydrodynamic cavitation somewhat overcomes the mass transfer limitations for triphasic transesterification reaction. The significant effects of upstream pressure on the rate of formation of methyl esters have been seen. It has been observed that flow geometry of orifice plate plays a crucial role in process intensification. With an optimized plate geometry of 2 mm hole diameter and 25 holes, more than 95% of triglycerides have been converted to methyl esters in 10 min of reaction time with cavitational yield of 1.28 × 10?3 (Grams of methyl esters produced per Joule of energy supplied). The potential of UFO to produce good quality methyl esters has been demonstrated.  相似文献   

12.
Hair waste in large amount is produced in India from temples and saloons, India alone exported approximately 1 million kg of hair in 2010. Incineration and degradation of waste human hair leads to environmental concerns. The hydrothermal process is a conventional method for the production of hair hydrolysate. The hydrothermal process is carried out at a very high temperature and pressure, which causes the degradation of heat-sensitive essential amino acids, thereby depleting the nutritional value. This work deals with alkaline hydrolysis of human hair using acoustic and hydrodynamic cavitation, and comparison with the conventional method. The optimal operating conditions for highest efficiency was observed, for the hydrolysis of 1 g of sample hairs in 100 mL of solution, at 4:1 (KOH: hair) ratio, soaking time of 24 h, the ultrasonic power density of 600 W dm−3 (20 KHz frequency and input power 200 W) or hydrodynamic cavitation inlet pressure of 4 or 7 bars. Cavitation results in rupture of disulfide linkages in proteins and mechanical effects lead to cleavage of several hydrogen bonds breaking the keratin sheet structure in hair. Breakdown of bonds leads to a decrease in viscosity of the solution. 10% and 6% reduction in viscosity is obtained at optimal conditions for ultrasonic and hydrodynamic cavitation treatment, respectively. FTIR analysis of produced hair hydrolysate confirmed that the disulfide bonds in hair proteins are broken down during cavitation. The amino acid of hair hydrolysate, prepared using cavitation, has a relatively higher digestibility and nutritional value due to the enhancement of amino-acid content, confirmed using amino acid analysis. Cavitation assisted hair hydrolysate has a potential application in agricultural engineering as a fertilizer for improvement of the quality of the soil and land. Cavitation based hair hydrolysate can also be used as an environmentally friendly and economical source of essential amino acids and digestibles for animal or poultry feed.  相似文献   

13.
Ultrasound can accelerate and change the reaction process and is widely used in the field of hydrogen production and storage. In this study, ultrasound (US) and AlOOH suspension (AH) are used to promote hydrogen production from Al hydrolysis. The results indicate that both US and AH greatly shorten the induction time and enhance the hydrogen production rate and yield. The promoting effect of US and AH on Al hydrolysis originates from the acoustic cavitation effect and catalytic effect, respectively. When AH is used in combination with US, Al hydrolysis has the best hydrogen production performance and the hydrogen yield can reach 96.6 % within 1.2 h, because there is a synergistic effect on Al hydrolysis between AH and US. Mechanism analyses reveal that the micro-jets and local high temperature environment arising from acoustic cavitation improve the catalytic activity of AlOOH, while the suspended AlOOH particles enhance the cavitation effect of US. This work provides a novel and feasible method to promote hydrogen production from Al hydrolysis.  相似文献   

14.
A laser image system for investigating twin bubbles formation in shear-thinning fluid was established. The process of twin-bubble formation could be directly visualized and real-time recorded through computer by means of He–Ne laser as light source using the beam expanding and light amplification technology. The shape and size of bubbles generating in carboxymethylcellulose (CMC) aqueous solutions were studied experimentally at orifice diameter 1 mm, 1.6 mm and 2.4 mm, the orifices interval 1Do, 2Do and 3Do (Do: orifice diameter) and the gas flow rate from 0.1 to 1.0 ml/s, respectively. The effects of solution mass concentration, orifice diameter and orifice interval on bubble detachment volume were investigated. The results reveals that twin bubbles gradually touch each other and then deviate from the vertical axis crossing the middle point of the line joining the two orifice during the formation process. However compared with the perfect teardrop terminal shapes in glycerol solution, the bubbles formed in CMC solutions are stretched vertically due to the shear-thinning effect of fluids. The bubble detachment volume increases with the solution mass concentration, whereas decreases with orifice diameter. The detachment volume generated at twin orifices is less affected by orifices interval, but still smaller than that at single orifice.  相似文献   

15.
Red-G dye is one of the main dyes used in the textile industry to dye alpaca wool. Therefore, considering the large volume of processed wool in Perú, the development of efficient technologies for its removal is a present scientific issue. In this study, an integrated system based on hydrodynamic cavitation (HC) and photo-Fenton process was evaluated to remove the Red-G dye. Using a hybrid cavitation device (venturi + orifice plate), the effect of pH was evaluated, achieving 21 % of removal at pH 2 which was more than 80 % higher compared to pH 4 and 6. The effect of temperature was also evaluated in HC-system at pH 2, where percentage of dye degradation increased at lower temperatures (around 20 °C). Then, 50.7 % of dye was removed under optimized condition of HC-assisted Fenton process (FeSO4:H2O2 of 1:30), that value was improved strongly by UV-light incorporation in the HC-system, increasing to 99 % removal efficiency with respect to HC-assisted Fenton process and reducing the time to 15 min. Finally, the developed cavitation device in combination with photo-Fenton process removed efficiently the dye and thus could be considered an interesting option for application to real wastewater.  相似文献   

16.
A novel method of treating a dye solution has been studied by hydrodynamic cavitation using multiple hole orifice plates. The present work deals with the effect of geometry of the multiple hole orifice plates on the degradation of a cationic dye rhodamine B (rhB) solution. The efficiency of this technique has been compared with the cavitation generated by ultrasound and it has been found that there is substantial enhancement in the extent of degradation of this dye solution using hydrodynamic cavitation. Large-scale operation coupled with better energy efficiency makes this technique a viable alternative for conventional cavitational reactors.  相似文献   

17.
The instability of allicin makes it easily decomposed into various organic sulfur compounds, resulting in significant decrease in biological activity. In this study, allicin was firstly extracted with water, then bound with whey protein isolates (WPI) which were pretreated by ultrasound to form conjugates, and the stability, water solubility and emulsibility of conjugates were as well investigated. The research results showed that there were no significant differences in the extraction yields of allicin from water, 40% and 80% ethanol. Appropriate frequency (20/40 kHz), power (50 W/L) and time (20 min) of ultrasonic pretreatments significantly increased (P < 0.05) the sulfhydryl groups content of WPI by 35.05% over control, causing improvement in binding ability of protein to allicin. The binding process of allicin-WPI displayed good fit with Elovich kinetic model (R2 = 0.9781). The mass retention rate of the conjugates (in 60% combination rate) with ultrasonic pretreating kept at 95.97% after 14 days of storage at 25 °C, whereas allicin’s mass retention rate was only 61.79% at same storage condition. The water solubility of the prepared conjugates was significantly higher than allicin. And with optimal condition ultrasonic pretreatment of WPI, the conjugates showed the highest emulsifying capacity and emulsion stability (49.56 m2/g, 10.06 min). In conclusion, the ultrasonically pretreated allicin-WPI conjugates exhibited better stability, water solubility and emulsifying properties compared to allicin, this expands the application field of allicin.  相似文献   

18.
In this study, ultrasound application at two different frequencies (37 or 80 kHz) and durations (15 or 30 min) was used as a pre-treatment for raw broiler breasts, and its effect on cooling, color, textural and sensory characteristics of cooked broiler breasts during vacuum cooling process was determined. The anterior and posterior parts of broiler breast halves were carefully removed, and these parts with a 20 mm width were named as the regions A and B, respectively. Both regions were vacuum-packed and pre-treated by ultrasound, followed by oven-cooking in aluminum foils, and cooling time, weight loss and temperature distribution characteristics were determined. Besides sensory and textural properties, the effect of the ultrasound pre-treatment on the pH, dry matter and ash contents and color (CIELAB) values of cooked breasts was determined. During vacuum cooling, ultrasound pre-treatment significantly reduced cooling time required to cool cooked broiler breasts from 85 °C to 12.5 °C, and the lowest values for the regions A and B were obtained for the 30 min ultrasound pre-treatment at 37 kHz as 12.72 and 14.61 min, respectively (p < 0.05). The cooling losses of breasts from the regions A and B were 12.64 and 11.61%, respectively. In comparison to immersion pre-treatment, increasing the frequency and duration of ultrasound pre-treatment generally decreased cooking loss values for both A and B regions while cooling loss increased. Instrumental hardness values of breast samples for the 15 min ultrasound pre-treatment decreased while they increased with the 30 min pre-treatment (p < 0.05) at both frequencies. The redness values (a*) increased by ultrasound pre-treatment while the highest value was found for a 30 min pre-treatment at 80 kHz for both regions. Sensory hardness (on a 14.5 cm scale) results indicated that the highest value (9.33) was determined for a 30 min ultrasound pre-treatment at 37 kHz while the ultrasound pre-treatment at 37 kHz for 15 min had no negative effect on hardness compared to control samples (p > 0.05). In conclusion, ultrasound pre-treatment can be successfully used for the vacuum cooling process of broiler breasts for the reduction of cooling time, and a 30 min ultrasound pre-treatment at 37 kHz can provide relatively superior cooling characteristics.  相似文献   

19.
Recent interest in biomass-based fuel blendstocks and chemical compounds has stimulated research efforts on conversion and upgrading pathways, which are considered as critical commercialization drivers. Existing pre-/post-conversion pathways are energy intense (e.g., pyrolysis and hydrogenation) and economically unsustainable, thus, more efficient process solutions can result in supporting the renewable fuels and green chemicals industry. This study proposes a process, including biomass conversion and bio-oil upgrading, using mixed fast and slow pyrolysis conversion pathway, as well as sono-catalytic transfer hydrogenation (SCTH) treatment process. The proposed SCTH treatment employs ammonium formate as a hydrogen transfer additive and palladium supported on carbon as the catalyst. Utilizing SCTH, bio-oil molecular bonds were broken and restructured via the phenomena of cavitation, rarefaction, and hydrogenation, with the resulting product composition, investigated using ultimate analysis and spectroscopy. Additionally, an in-line characterization approach is proposed, using near-infrared spectroscopy, calibrated by multivariate analysis and modeling. The results indicate the potentiality of ultrasonic cavitation, catalytic transfer hydrogenation, and SCTH for incorporating hydrogen into the organic phase of bio-oil. It is concluded that the integration of pyrolysis with SCTH can improve bio-oil for enabling the production of fuel blendstocks and chemical compounds from lignocellulosic biomass.  相似文献   

20.
To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation–hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid.Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip? and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip? carriers (85% ± 10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74% ± 22% and 48% ± 19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3–70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号