首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper (II) oxide nanoparticles were synthesized in an ultrasound assisted Fenton-like aqueous reaction between copper (II) cations and hydrogen peroxide. The reactions were initiated with the degradation of hydrogen peroxide by ultrasound induced cavitations at 0 °C or 5 °C and subsequent generation of the OH radical. The radical was converted into hydroxide anion in Fenton-like reactions and copper hydroxides were readily converted to oxides without the need of post annealing or aging of the samples. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) surface area analysis. Catalytic activity of the nanoparticles for the hydrogen peroxide assisted degradation of polycyclic aromatic hydrocarbons in the dark was tested by UV–visible spectroscopy with methylene blue as the model compound. The rate of the reaction was first order, however the rate constants changed after the initial hour. Initial rate constants as high as 0.030 min−1 were associated with the high values of surface area, i.e. 70 m2/g. Annealing of the products at 150 °C under vacuum resulted in the decrease of the catalytic activity, underlying the significance of the cavitation induced surface defects in the catalytic process.  相似文献   

2.
The present paper describes the result of investigations into preparation of novel nanocomposites (NCs) based on poly(N-vinyl-2-pyrrolidone) (PVP) as a biocompatible polymer and modified copper (II) oxide nanoparticles (NPs) as a nano-filler. To achieve optimum NCs properties, different ratios of modified copper (II) oxide NPs (3, 5, and 7 wt%) were used to fabricate PVP NCs and also the ultrasonic irradiation was utilized to perform these processes as a fast and effective method. Subsequently, the structure of the obtained nanohybrids was characterized by various techniques. The suitable incorporation between PVP matrix and modified CuO NPs can be seen from the FT-IR spectra. The obtained NCs indicated an efficient thermal improvement in comparison to the pristine polymer. Also, the uniform dispersion of modified CuO NPs in the PVP matrix was detected by FE-SEM and EDX. According to UV absorption spectra, it is clear that these NCs can be used in UV protecting applications.  相似文献   

3.
The present study has reported an optimized fabrication and application of a novel PVA/TEOS/Schiff base nanofibers membrane as a highly sensitive copper (II) ions in aqueous environment. Here in, for first time, an ultrasound-assisted synthesized symmetric Schiff base has been immobilized on a hybrid polyvinyl alcohol (PVA) and TEOS using electrospinning technique for detection and filtration of copper ions. For this purpose, various working parameters were evaluated and finally the optimized nano fibers membrane was synthesized with 72 nm thickness and PVA/TEOS/Schiff base ratio of (wt%) 8:6:1. The optimized sample named PTLNFM has been employed successfully as an ultra sensitive chemosensor for Cu (II) detection in real samples. The immobilized Schiff base used as a chelating agent could detect copper (II) in the range from 9.34 × 10−8 to 1.15 × 10−5 mol L−1 with the following correlation equation: Absorbance = 0.066 [Cu2+] × 10−6 + 0.095 and R2 = 0.992 and LOD of 1.27 × 10−8 mol L−1 which was lower than most of the reported detection limits in the previous literatures. Validity of this method has been carried out by analysis of Cu2+ in real samples with satisfying recoveries of over 96.11–99.24%.The developed membrane could be offered for diverse use such as medical or industrial applications.  相似文献   

4.
Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 °C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 °C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 × 10−5 and was steadily reduced down to 5 × 10−9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.  相似文献   

5.
This paper describes a highly efficient and rapid approach of synthesizing different CuO nanostructures in aqueous solutions using ultrasound irradiation of copper(II) acetate with urea/sodium hydroxide in the presence of polyvinylpyrrolidone (PVP), as stabilizing polymer. Field emission scanning electron microscope images clearly indicate the formation of CuO quasi-spherical microarchitectures and long-straw like structure in the presence of urea and sodium hydroxide. Other characterization techniques such as TEM, XRD and XPS are also provided to support the formation of such structures. One of the reasons for the formation of such CuO nanostructures may be due to the formation of a polymer-metal complex with the stabilizing polymer (PVP).  相似文献   

6.
Size-controlled chemical reduction synthesis of nanostructured Cu was studied in the presence of a single modifier such as polyethylene glycols, sodium dodecyl benzene sulfonate, sodium dodecyl sulfate or a mixture of two different types of modifiers. The Cu nanoparticles were characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction and Fourier transform infrared spectroscopy. The average particle size and particle size distribution of the nanostructured Cu depend upon the type of modifiers and the modifier effect follows the order: PEG-2000 > SDBS > PEG-600 > SDS > PEG-6000. The experimental results indicate that due to the existence of a synergistic action, a mixture of two types of modifiers has a significant effect on the particle size and the size distribution of Cu nanoparticles.  相似文献   

7.
Nano-structure of a new 0D Pb(II) coordination supramolecular compound, [Pb4(8-Quin)6](ClO4)2(1), L = 8-HQuin = 8-hydroxyquinolin ligand has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and elemental analyses. The structure of compound 1 was determined by single-crystal X-ray diffraction. The single crystal X-ray data of compound 1 implies that the Pb+2 ions are five coordinated. Each lead atom is coordinated to nitrogen and oxygen atoms of 8-hydroxyquinolin ligand. Topological analysis shows that the compound 1 is 1,2,3,4,4M12-1net. Nanoparticles of lead(II) oxide have been prepared by calcination of lead(II) coordination polymer at 500 °C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and IR spectroscopy.  相似文献   

8.
Abstract

Abstract: The vibrational spectra of crystalline anhydrous copper (II) propionate and butyrate were studied by FT-IR spectroscopy. A detailed assignment of the spectra of both compounds is presented and discussed. It is shown that the presence of two non-equivalent sets of carboxylate ligands within the crystals gives rise to several band splittings, which are particularly evident in those bands ascribable to normal modes involving predominantly the -CβH3 or -CβH2-fragments. In addition, the vibrational assignments made for the studied molecules are shown to be very useful to help understanding the much more complex spectra of long chain copper carboxylates.  相似文献   

9.
The new complexes CuX2(LH2), CuX2 (SH3) (X = Cl, Br), CuX(LH2), CuX(SH3) (X = Cl, Br, I), CuX(H4MTO)2 (X = Cl, Br), Cul(H4MTO) and CuX(H3MMTO)2 (X = Cl, Br, I), where LH2 = N.N′-dimethyl-monothiooxamide, SH3 = N(s)-methylmonothiooxamide, H4MTO = monothiooxamide and H3MMTO = N(o)-methylmonothiooxamide, have been prepared. The complexes were characterized by elemental analyses, conductivity measurements, magnetic moments and spectroscopic (UV/VIS, FT-IR, Laser-Raman) studies. The vibrational analysis of the complexes has been given using NH/ND, CH3/CD3 and 63cu/65cu isotopic substitutions. The neutral monothiooxamides behave as monodentate ligands in the Cu(I) complexes coordinating through their thioamide sulfur atom. The ligands LH2 and SH3 act as bidentate chelating agents in the Cu(II) complexes with ligated atoms being the thioamide sulfur and the amide oxygen.  相似文献   

10.
Nanostructures of three Zinc(II) coordination polymers, [Zn(NNO)2(H2O)4]n (1), [Zn(PNNO)2(H2O)2]n (2) and [Zn(H2O)6]·(INNO)2 (3) {NNO: Nicotinic acid N-oxide, PNNO: Picolinic acid N-oxide and INNO: Isonicotinic acid N-oxide}, have been synthesized by a sonochemical process and reaction of ligands with Zn(CH3COO)2. The Zinc(II) oxide nano-particles have been synthesized from thermolysis of [Zn(NNO)2(H2O)4]n (1), [Zn(PNNO)2(H2O)2]n (2) and [Zn(H2O)6]·(INNO)2 (3) at two different methods (with surfactant and without surfactant) and two temperatures (200 and 600 °C). The ZnO nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparison of the SEM images of ZnO nano-particles at two different methods and temperatures shows that higher temperature results in an increasing of agglomeration and thus small and spherical ZnO particles with good separation were produced by thermolysis of compounds at 200 °C and by use of surfactant.  相似文献   

11.
Hydroxyl functionalized copper(II) Schiff-base, N,N′-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH)2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH)2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the “neat” complexes than over the encapsulated complexes.  相似文献   

12.
Nanoparticles of two zinc(II) coordination supramolecule compounds (CSCs), [Zn(L)Cl2] (1) and [Zn(L)Br2] (2) L = 1,10-phen = 1,10-phenanthroline ligand, have been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compounds 1 and 2 imply that the Zn+2 ions are four coordinated. Topological analysis shows that the compound 1 and 2 are new topology for net: 1,3M4-1. Nanoparticles of zinc(II) oxide have been prepared by calcination of two different zinc(II) CPs at 500 °C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and IR spectroscopy.  相似文献   

13.
《Current Applied Physics》2014,14(9):1301-1303
The role of CuO films in meliorating resistive switching behavior of graphene oxide (GO) in CuO/GO/CuO memory structure was investigated. An increase in the set voltage from 1.3 to 3.0 V and a step-like switching current was clearly observed when the GO film was sandwiched between two CuO layers. It is attributed to the fact that the set voltage of GO is lower than that of CuO and accumulated charge carriers located at the interface of GO and CuO can pass through CuO abruptly at set voltage of 3.0 V. Our results suggested that designed sandwich structure of materials with different set voltage enables to amend resistive switching response characteristics.  相似文献   

14.
In the last two decades, many studies have been reported on infinite Id networks of magnetically interacting metal ions. Until now, closed-form expressions for the partition function and related properties were mainly derived for the S = f Ising chain model (Ising, 1925), the XY model (Kastura, 1962) or for the classical limit S –t co with arbitrary spin dimensionality (Fischer, 1964). Recently, experimental and theoretical studies have focused on new Id systems made of alternating spin and/or Lande factors (Georges, Curely and Drillon, 1985; Drillon et al., 1983). This has motivated our interest in the behavior of new systems of copper(II) ions in which the magnetic sites form an exotic stacking in one direction of the crystal. Then, the specific behavior is related to the competition between different interactions, as occurs in the systems reported here, namely A3Cu3(PO4)4, with A = Ca, Sr, Cu3(PO4)2 and Cu2O(SO4).  相似文献   

15.
A template-assisted sol-gel procedure was developed and optimised for the preparation of silica thin films embedding the fluorescent dye 3-(dansylamido)-propyl-triethoxysilane (DNS-APTES) for Cu(II) sensing purposes. The different parameters involved (solution composition, nature of the template, deposition and annealing conditions, post-synthesis deposition of additional coatings, etc.) were independently changed in order to evaluate their effect on the final microstructure, composition and sensor performances of the films. The optimisation procedure encompassed also the choice of the suitable parameters to ensure stability of the sensing films and to avoid the leaching of the fluorescent dye.Films prepared by using the non-ionic surfactant F127, without an additional coating and with a post-deposition annealing at 100 °C for 2 h, were proven to be the best performing ones, characterised by the largest and fastest fluorescence quenching. In particular, the presence of a template was demonstrated to play a major role in determining the efficiency of the sensing device. The surface and in-depth composition of thin films was analysed by X-Ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS). The sensing performances of the films were tested by titration experiments with Cu2+.  相似文献   

16.
Nanoparticles of a three-dimensional supramolecular, [Cu(L)2(H2O)2] (1), (L = 1H-1,2,4-triazole-3-carboxylate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. The thermal stability of compound 1 both its bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal analyses (DTA) and compared each other. Concentration of initial reagents effects on size and morphology of nano-structured compound 1, have been studied. Calcination of the nano-sized compound 1 at 600 °C under air atmosphere yields CuO nanoparticles.  相似文献   

17.
A new selective and sensitive optical sensor based on the incorporation of new synthesized N′-(2-hydroxy-5-iodobenzylidene) isonicotinohydrazide (HIBIN) as an effective reagent into the nanoporous of a transparent glass like material through the sol–gel process was developed which was suitable for the determination of copper (II) ions in aqueous solutions. The thin film sensors were constructed by spin-coating of prepared sol onto glass plate and their surface morphology were studied by field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM) technique. Influence of sonication time on immobilization of HIBIN into silica matrix was investigated through calculation of leaching percentage. The Results shown that sonication time of 35 min is suitable to give more stable thin films without fluctuation in sensitivity and response time of presented sensor for a long period of time. The proposed optical sensor can be used for determination of copper (II) ions in the range of 9.1 × 10−8–1.12 × 10−5 mol L−1with a detection limit of 1.8 × 10−8 mol L−1. It also showed relative standard deviation 3.4 and 0.72% for reproducibility and repeatability respectively, along with a fast response time about of 2 min. The constructed optode is stable in wet conditions and could be stored for at least 6 weeks without observing any change in its sensitivity. The developed sensor was successfully applied to the determination of copper (II) in fruit juice and water samples which results were confirmed by atomic absorption spectrometry method.  相似文献   

18.
报道了聚丙烯胺稳定的球形和棒状铜纳米粒子的制备方法。在水溶液中空气条件下,通过水合肼还原二价铜离子到铜纳米粒子。聚丙烯胺的作用除稳定粒子防止聚集外,也可使粒子分散在水溶液中。该法的优点是在室温下,无需惰性气体保护,即可制备水溶液中分散的铜纳米粒子。紫外光谱和透射电镜监测了铜纳米粒子的生长过程。发现氢氧化钠的用量,聚丙烯胺浓度,反应时间等因素都影响到铜纳米粒子的组成,尺寸,形貌和聚集程度。氢氧化钠用量决定了制备粒子的组成成分是铜或氧化亚铜。所制备的球形铜纳米粒子表现出优良的表面增强拉曼散射活性。  相似文献   

19.
Abstract

Rh(II) complexes are rather scarce1 and often form dimeric structures, which are diamagnetic. The ESR spectra of definite Rh(II) species have so far been claimed for Rh in ZnWO3 2, [Rh S4C4(CN)4]2 ?, 3′4 [Rh(π-C5H5)2]5, [(π-C5H5)Rh(π-C2H4)2]+6, and an irradiation produced [RhCπ2(CN)4]2 ? complex.7 A detailed analysis has been performed on the first2, the second4 and the last7 complexes. The first system shows an almost axial symmetry and the unpaired electron has been assigned to the dxy orbital2 (the x,y,z axes are defined along the octahedral metal-ligand directions). The sulfur ligand complex and the dichlorotetracyano system have their unpaired electron in the dZ 2 orbital. 4,7 In the course of studies 8-10 on oxygenation of a Rh(I) complex, [RhCπ(C8H14)2]2, we observed 10 that a well defined ESR spectrum develops during the reaction in N,N′-dimethylacetamide (DMA) - lithium chloride media. For experimental detail, reference 10 should be consulted. The data summarized in the table refer to the spectrum B in that reference and are attributed to a Rh(II) species.  相似文献   

20.
Two nanoparticles of cadmium(II) coordination polymers (CPs) formulated as [Cd(L)(DCTP)]n (1) and [Cd(L)2(DCTP)·2H2O]n (2) (L = 1,2-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2DCTP = 2,5-dichloroterephthalic acid) were prepared by the sonochemical approach in different solvents and characterized by elemental analysis, IR spectra, scanning electron microscopy (SEM), and powder X-ray diffraction. Structural determination reveals that CP 1 displays a 2D four-connected sql net layer, Whilst CP 2 exhibits a 1D “V”-like chain structure. Luminescence properties, thermal behavior, and photocatalytic activities of the nanoparticles of CPs 1 and 2 on the degradation of methylene blue were investigated. The photocatalytic mechanism is carried out by introducing t-butyl alcohol (TBA) as a widely used OH scavenger. Furthermore, the influence of solvents, reaction time, and ultrasound irradiation temperature on the morphology and size of the nanostructure CPs 1 and 2 were investigated. The results indicated that an increase of time and ultrasound irradiation temperature decreased the nanostructured size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号