首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In our previous paper, we derived a new single bubble model including the effect of bulk viscosity. To confront it to experiments, single bubble dynamics was measured here in 30% (v/v) glycerol-water mixture under different acoustic amplitudes and compared to models including or not the effect of bulk viscosity. The results showed that calculated bubble dynamics were not significantly affected by the bulk viscosity within the experimental conditions used in this study. However, there was a noticeable delay for the first rebound when bulk viscosity was considered. The corresponding sonoluminescence intensities were collected and compared with theoretical predictions. The results did not allow to discriminate between the two models (one includes the effect of bulk viscosity, the other does not), confirming the negligible effect of bulk viscosity in this condition (30% (v/v) glycerol-water mixture). Due to the instability of a single bubble in higher viscosity solutions, we could not implement experiments that can discriminate between the two models.  相似文献   

3.
The bubbles have been widely used in biomedical field, military and chemical industry. The liquid jet generated by the bubble collapse through an orifice is utilized in needle-free injections and inkjet printing. In this paper we devised synchronized triggering equipment, experimentally investigated the mechanism in the interaction of an electric-spark generated a single bubble and a vertical wall with an air-back opening. Detailed observations were recorded and described for bubble oscillation, migration, jetting, as well as the high-speed water spike penetrating through the opening. The results revealed that there was a critical value of the bubble-wall distance, below which the bubble was directed away from the incomplete boundary, while the bubble may tear from the middle for larger distance. As the distance varied, we studied the volume of the water that rushed through the opening, the velocity at the tip of the water spike, and the center of the bubble as well as the migration of the bubble boundary. This work reveals that the high-speed water spike caused by the bubble may be a potential threat to the structures, specifically for cases with a small opening size and short bubble-boundary distance.  相似文献   

4.
In the present paper, the collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall is experimentally investigated with a high-speed photography system. For a symmetrical setup, the two primary control parameters of the bubble collapsing behavior include the equivalent maximum bubble radius and the distance between the bubble and the edge of the rigid wall. Based on the bubble interface deformation during the collapsing process, three typical cases are identified for the categorization of the phenomenon with the influences of the parameters revealed. Through a quantitative analysis of the obtained high-speed photos, the motions of the bubble interface in different directions are given together with the calculations of the bubble centroid. The primary findings of the present paper could be summarized in terms of the bubble-edge distance as follows. When the bubble is close to the edge, the movement of the bubble interface near the edge will be restricted with a clear neck formation in the middle part of the bubble. For this case, the edge could delay the bubble collapsing time up to 22% of the Rayleigh collapsing time. When the bubble is of the medium distance to the edge, the differences of the expansion or shrinkage of the bubble interface among different directions will be reduced with an olive-shaped bubble formed during the collapsing process. For this range of parameters, the bubble moves rapidly toward the edge especially during the final collapsing stage. When the bubble is far away from the edge, the bubble will be a nearly spherical one.  相似文献   

5.
6.
It is well known that the primary Bjerknes force is the origin of the trapping of sonoluminescing bubble in the sound field in liquid. In the present Letter, the quantitative investigation of the behavior of hydrodynamic force on the moving sonoluminescing (SL) bubble introduces the new role of stabilizing the trajectory motion of the bubble for primary Bjerknes force. Using a complete force balanced radial-translational dynamics, it is analytically discussed that by increasing the bubble distance from the antinode of the sound field the increase of the magnitude of inward Bjerknes force, controls the size of the domain of the bubble trajectory. At this time the wake produced by the rapid variation of the bubble's relative translational velocity to the surrounding liquid, changes the bubble direction of motion through the effect of history force. The required momentum for accelerating the SL bubble around the central antinode is produced by the added mass force at the bubble collapse. It is revealed in a re-examination of the coupled radial-translational dynamics for a trapping bubble that because of the bubble lower translational acceleration caused due to the lower added mass force and the bubble attraction towards the acoustic antinodes in presence of inward Bjerknes force, the small bubble will be trapped at the antinode of the sound field.  相似文献   

7.
Bubble behaviors near a boundary in an ultrasonic field are the fundamental forms of acoustic cavitation and of substantial importance in various applications, such as industry cleaning, chemical engineering and food processing. The effects of two important factors that strongly affect the dynamics of a single acoustic cavitation bubble, namely, the initial bubble radius and the standoff distance, were investigated in this work. The temporal evolution of the bubble was recorded using high speed microphotography. Meanwhile, the time of bubble collapse and the characteristics of the liquid jets were analyzed. The results demonstrate that the intensity of the acoustic cavitation, which is characterized by the time of bubble collapse and the liquid jet speed, reaches the optimum level under suitable values of the initial bubble radius and the normalized standoff distance. As the initial bubble radius and the normalized standoff distance increase or decrease from the optimal values, the time of the bubble collapse increases, and the first liquid jet’s speed decreases substantially, whereas the speeds of the second and third liquid jets exhibit no substantial changes. These results on bubble dynamics in an ultrasonic field are important for identifying or correcting the mechanisms of acoustic cavitation and for facilitating its optimization and application.  相似文献   

8.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.  相似文献   

9.
The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23 kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter (“red region”), while such emissions are nearly absent close to the horn tip (“blue region”). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.  相似文献   

10.
钱祖文  肖灵 《中国物理 B》2008,17(10):3785-3791
The numerical results obtained by Rayleigh-Plesset (R-P) equation failed to agree with the experimental Mie scattering data of a bubble in water without inappropriately increasing the shear viscosity and decreasing the surface tension coefficient. In this paper, a new equation proposed by the present authors (Qian and Xiao) is solved. Numerical solutions obtained by using the symbolic computation program from both the R-P equation and the Qian-Xiao (Q-X) equation clearly demonstrate that Q-X equation yields best results matching the experimental data (in expansion phase). The numerical solutions of R-P equation also demonstrate the oscillation of a bubble in water depends strongly upon the surface tension and the shear viscosity coefficients as well as the amplitude of driving pressure, so that the uniqueness of the numerical solutions may be suspected if they are varied arbitrarily in order to fit the experimental data. If the bubble's vibration accompanies an energy loss such as the light radiation during the contract phase, the mechanism of the energy loss has to be taken into account. We suggest that by use of the bubble's vibration to investigate the state equations of aqueous solutions seem to be possible. We also believe that if one uses this equation instead of R-P equation to deal with the relevant problems such as the 'phase diagrams for sonoluminescing bubbles', etc., some different results may be expected.  相似文献   

11.
圆形破口附近气泡动态特性实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王诗平  张阿漫  刘云龙  吴超 《物理学报》2013,62(6):64703-064703
以往对于壁面附近气泡动态特性的研究均是针对完整壁面进行的, 而对带破口壁面附近气泡运动特性的研究很少, 例如舰船结构在遭受药包爆炸冲击波作用后形成破口, 其仍可能会遭受随后生成气泡的二次打击, 破口的存在必定会影响爆炸生成气泡的动力学行为. 本文采用电火花气泡生成与观察实验装置, 对带有破口的壁面附近气泡脉动和射流特性进行研究.通过实验发现, 当气泡在破口同心位置生成时, 破口的存在会使气泡靠近破口一侧形成"腔吸现象", 并使气泡形成对射流. 在此基础上分析了破口大小和无量纲距离对破口附近气泡的影响规律, 最后讨论气泡在破口偏心位置生成时的运动特性, 结果发现破口附近气泡的二次打击威力随偏心距离的增加而增加, 文章旨在为不同边界附近气泡运动规律研究提供参考. 关键词: 气泡 实验 破口 射流  相似文献   

12.
以水为工作介质,考虑了液体的轻微可压缩性,研究了声场中气泡群的动力学特性,对单一型和混合型气泡群内微泡的初始半径、气泡的数目及声频率和声压对气泡动力学特性进行了数值研究.分析了各参数对气泡运动特性和气泡崩溃时所产生压力脉冲的影响.研究了单一型气泡群内气泡动力学的混沌特性,分析了气泡处于混沌特性下两次崩溃压力脉冲特征,结果表明:适合的参数有利于提高声空化处理效果.  相似文献   

13.
张宝玲  汪俊  侯氢 《中国物理 B》2011,20(3):36105-036105
In this paper,the pressure state of the helium bubble in titanium is simulated by a molecular dynamics(MD) method.First,the possible helium/vacancy ratio is determined according to therelation between the bubble pressure and helium/vacancy ratio;then the dependences of the helium bubble pressure on the bubble radius at different temperatures are studied.It is shown that the product of the bubble pressure and the radius is approximately a constant,a result justifying the pressure-radius relation predicted by thermodynamics-based theory for gas bubble.Furthermore,a state equation of the helium bubble is established based on the MD calculations.Comparison between the results obtained by the state equation and corresponding experimental data shows that the state equation can describe reasonably the state of helium bubble and thus could be used for Monte Carlo simulations of the evolution of helium bubble in metals.  相似文献   

14.
The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past decades,the lattice Boltzmann method has emerged as a promising tool to address such complexities.In this regard,we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field.A problem as a benchmark is studied to check the consistency and applicability of the model.The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics,as well as the screening effect on an acoustic multibubble medium.It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.  相似文献   

15.
This paper tries to discern the mechanistic features of sonochemical degradation of recalcitrant organic pollutants using five model compounds, viz. phenol (Ph), chlorobenzene (CB), nitrobenzene (NB), p-nitrophenol (PNP) and 2,4-dichlorophenol (2,4-DCP). The sonochemical degradation of the pollutant can occur in three distinct pathways: hydroxylation by OH radicals produced from cavitation bubbles (either in the bubble–bulk interfacial region or in the bulk liquid medium), thermal decomposition in cavitation bubble and thermal decomposition at the bubble–liquid interfacial region. With the methodology of coupling experiments under different conditions (which alter the nature of the cavitation phenomena in the bulk liquid medium) with the simulations of radial motion of cavitation bubbles, we have tried to discern the relative contribution of each of the above pathway to overall degradation of the pollutant. Moreover, we have also tried to correlate the predominant degradation mechanism to the physico-chemical properties of the pollutant. The contribution of secondary factors such as probability of radical–pollutant interaction and extent of radical scavenging (or conservation) in the medium has also been identified. Simultaneous analysis of the trends in degradation with different experimental techniques and simulation results reveals interesting mechanistic features of sonochemical degradation of the model pollutants. The physical properties that determine the predominant degradation pathway are vapor pressure, solubility and hydrophobicity. Degradation of Ph occurs mainly by hydroxylation in bulk medium; degradation of CB occurs via thermal decomposition inside the bubble, degradation of PNP occurs via pyrolytic decomposition at bubble interface, while hydroxylation at bubble interface contributes to degradation of NB and 2,4-DCP.  相似文献   

16.
The sonochemical activity and the radial dynamics of a harmonically excited spherical bubble are investigated numerically. A detailed model is employed capable to calculate the chemical production inside the bubble placed in water that is saturated with oxygen. Parameter studies are performed with the control parameters of the pressure amplitude, the forcing frequency and the bubble size. Three different definitions of collapse strengths (extracted from the radius vs. time curves) are examined and compared with the chemical output of various species. A mathematical formula is established to estimate the chemical output as a function of the collapse strength; thus, the chemical activity can be predicted without taking into account the chemical kinetics into the bubble model. The calculations are carried out by an in-house code exploiting the high processing power of professional graphics cards (GPUs).The results shown that chemical activity can be approximated qualitatively from the values of relative expansion. This could be helpful in order to optimise chemical output of sonochemical reactors either from measurement data or simulations as well.  相似文献   

17.
The objective of this paper is to investigate the transient conical bubble structure (CBS) and acoustic flow structure in ultrasonic field. In the experiment, the high-speed video and particle image velocimetry (PIV) techniques are used to measure the acoustic cavitation patterns, as well as the flow velocity and vorticity fields. Results are presented for a high power ultrasound with a frequency of 18 kHz, and the range of the input power is from 50 W to 250 W. The results of the experiment show the input power significantly affects the structures of CBS, with the increase of input power, the cavity region of CBS and the velocity of bubbles increase evidently. For the transient motion of bubbles on radiating surface, two different types could be classified, namely the formation, aggregation and coalescence of cavitation bubbles, and the aggregation, shrink, expansion and collapse of bubble cluster. Furthermore, the thickness of turbulent boundary layer near the sonotrode region is found to be much thicker, and the turbulent intensities are much higher for relatively higher input power. The vorticity distribution is prominently affected by the spatial position and input power.  相似文献   

18.
The equipment and method for studying transient bubble dynamics are described in simple sonochemical reactors and presented using still frames from high-speed video microscopy (500 fps). Effects on aeration bubbles (mean size 1–3 mm diameter) and the cavitation induced species (<0.5 mm diameter) are studied. The images are computer enhanced to improve interpretation of such features as the maximum ellipsoidal distortion at the nodal sound plane and spherical shape regain with due consideration of energy involved and expansion effects at the nodal sound plane. Also immersion depth/pressure effects, as the bubbles transcend the sound field column, in the cylindrical reactor, are recorded for evaluation of nodal and antinodal sound wave effects. Positions of the nodal and antinodal regions are marked using a novel tungsten halogen bulb technique and verified using the sonoelectroluminescent approach with the classical luminol/hydrogen peroxide chemistry which is enhanced under the sound field conditions.  相似文献   

19.
Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid–structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.  相似文献   

20.
The effect of ambient pressure on the dynamics of laser-induced bubbles was investigated by a fiber-optic diagnostic technique based on probe beam deflection (PBD). The experimental criterion for judging the maximum bubble radius is modified to the average value of the detecting distances at which the characteristic waveform signals appear. The ambient pressure affects the maximum radius and collapse of bubble strongly. The experimental results indicate that the maximum bubble radius and the collapse time both decrease nonlinearly while the ambient pressure increases linearly, and the decreasing velocities of them are smaller at a larger ambient pressure. The predicted value of collapse time has a good agreement with experiment at larger ambient pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号