首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe173+, ThHe174+, and PaHe174+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHen3+ (n=1–17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R2>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac−He distances, and also with the incremental He binding energies.  相似文献   

3.
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe173+, ThHe174+, and PaHe174+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHen 3+ (n =1–17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge‐induced dipole bonding. Excellent correlations (R 2>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac−He distances, and also with the incremental He binding energies.  相似文献   

4.
Avoided crossing diagram parameters for the radical exchange reaction and the concerted exchange of two and three bonds are computed by using the approximated valence bond method, which is a nonorthogonal configuration interaction (CI) semiempirical method among the valence bond configuration functions. Here, each valence bond configuration function is a spin-adapted combination of Slater determinants constructed from the Heitler-London or Coulson-Fischer hybrid orbitals. Atomic orbitals integrals are evaluated using semiempirical philosophy, and these provide considerable saving of computer time compared with the most standard ab initio multistructure valence bond methods. The results indicate that the approximate valence bond method is capable of yielding reasonable results for the avoided crossing diagram parameters. These results also indicate that the diagram gap (G) is the decisive factor for the stability of symmetric clusters, Xn, although no clear correlation between the gap G and the geometric distortion is found for different values of n. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
A relativistic density functional theory (DFT) study is reported which aims to understand the complexation chemistry of An4+ ions (An = Th, U, Np, and Pu) with a potential decorporation agent, 5-LIO(Me-3,2-HOPO). The calculations show that the periodic change of the metal binding free energy has an excellent correlation with the ionic radii and such change of ionic radii also leads to the structural modulation of actinide–ligand complexes. The calculated structural and binding parameters agree well with the available experimental data. Atomic charges derived from quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis shows the major role of ligand-to-metal charge transfer in the stability of the complexes. Energy decomposition analysis, QTAIM, and electron localization function (ELF) predict that the actinide–ligand bond is dominantly ionic, but the contribution of orbital interaction is considerable and increases from Th4+ to Pu4+. A decomposition of orbital contributions applying the extended transition state-natural orbital chemical valence method points out the significant π-donation from the oxygen donor centers to the electron-poor actinide ion. Molecular orbital analysis suggests an increasing trend of orbital mixing in the context of 5f orbital participation across the tetravalent An series (Th-Pu). However, the corresponding overlap integral is found to be smaller than in the case of 6d orbital participation. An analysis of the results from the aforementioned electronic structure methods indicates that such orbital participation possibly arises due to the energy matching of ligand and metal orbitals and carries the signature of near-degeneracy driven covalency.  相似文献   

6.
Adsorption energies and density of states for O atoms adsorption on the Ti3Al (0001) surface have been calculated using first‐principles calculations based on density functional theory. It is found that the order of O atom adsorption on the Ti3Al (0001) surface is associated with the adsorption energy as well as the distance of O atoms because of the interaction. The adsorption energy mainly depends on the bond number and bond strength between O and Ti atoms, and the adsorption site with rich‐Ti surface (HI and HCPAl) is first priority. The adsorption energy decreases with the increase of the oxygen coverage because of the characteristics of the valence d‐orbitals of transition metals surface. Furthermore, the density of states indicates that the hybridization peak of O and Ti atoms is mainly from the contribution of Ti 3d‐ and O 2p‐orbitals, and the hybridization peak of O and Al atoms from the contribution of Al 2p‐ and O 2p‐orbitals. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A new Z,Z-stilbenophane was synthesised and characterised. According to an X-ray structure analysis, the structure has a saddle shape, with the π-electrons of the double bonds and the oxygen atoms pointing towards the centre of a cavity. The ligand forms a 1:1 complex with Ag+. Both NMR spectra and theoretical analysis (Gauge-independent atomic orbitals (GIAO) and Quantum theory of atoms in molecules (QTAIM)) suggest that the silver cation is bound within the molecular cavity. The metal is coordinated by the two olefinic double bonds and the four oxygen atoms in an approximately octahedral environment. The coordination motif is unusual because the soft silver cation prefers the interaction with the four hard oxygen atoms over the bonding to the arene units, which is frequently observed in Ag+ arene complexes.  相似文献   

8.
9.

The present study examines bonding patterns between copper Cun clusters (n?=?3–20) and aromatic compounds (benzene, phenol, and benzaldehyde) using a density-functional theory (DFT) approach. Hirshfeld population, natural bond orbital (NBO), molecular orbitals, and quantum theory of atoms in molecules (QTAIM) analyses suggested the formation of two types of interactions Cu–arene and C–H···Cu, in the complexation of copper clusters by an aromatic compound.

  相似文献   

10.
11.
12.
The factors/structural features which are responsible for the binding, activation and reduction of N2 to NH3 by FeMoco of nitrogenase have not been completely understood well. Several relevant model complexes by Holland et al. and Peters et al. have been synthesized, characterized and studied by theoretical calculations. For a matter of fact, those complexes are much different than real active N2-binding Fe-sites of FeMoco, which possesses a central C(4-) ion having an eight valence electrons as an μ6-bridge. Here, a series of [(S3C(0))Fe(II/I/0)-N2]n- complexes in different charged/spin states containing a coordinated σ- and π-donor C(0)-atom which possesses eight outer shell electrons [carbone, (Ph3P)2C(0); Ph3P→C(0)←PPh3] and three S-donor sites (i.e. -S-Ar), have been studied by DFT, QTAIM, and EDA-NOCV calculations. The effect of the weak field ligand on Fe-centres and the subsequent N2-binding has been studied by EDA-NOCV analysis. The role of the oxidation state of Fe and N2-binding in different charged and spin states of the complex have been investigated by EDA-NOCV analyses. The intrinsic interaction energies of the Fe−N2 bond are in the range from −42/−35 to −67 kcal/mol in their corresponding ground states. The S3C(0) donor set is argued here to be closer to the actual coordination environment of one of the six Fe-centres of nitrogenase. In comparison, the captivating model complexes reported by Holland et al. and Peter et al. possess a stronger π-acceptor C-ring (S2Cring donor, π-C donor) and stronger donor set like CP3 (σ-C donor) ligands, respectively.  相似文献   

13.
Starting from the bond polarization theory (BPT), a new semiempirical method for the calculation of net atomic charges is developed. The bond polarization theory establishes a linear dependence of atomic charges from the bond polarization energy. This energy is calculated from the hybrid orbitals forming a bond and the point charges within the neighborhood. Empirical parameters are introduced for the polarity of an unpolarized bond and for the change of the atomic charge with σ- and π-bond polarization. Because these parameters are linear, they can be calibrated directly using net atomic charges from ab initio calculations. This procedure was performed using the charges from STO3G calculations on a set of 18 amino acids. Using the two parameters for CH, OH, σ-CO, and NH bonds and the three parameters for CC, CO, and CN bonds, the 350 ab initio charges can be reproduced with high accuracy by solving sets of linear equations for the charges. The calculation of charges for large molecular systems including all inter- and intramolecular mutual polarizations requires only a few seconds (up to 100 atoms) or minutes (700 atoms) on a PC. This procedure is well suited for the application in molecular mechanics or molecular dynamics programs to overcome the limitations of most force fields used up to now. One of the weakest points in these programs is the use of fixed or topological charges to define the electrostatic potential. As an application of the new method, we calculated the interaction energy of an ion with valinomycin. This ring molecule forms octahedral oxygen cages around ions like potassium and acts thereby as selective ion carrier. To accomplish this function, valinomycin has to strip off the hydratization spheres of the ions, and therefore its preference for certain types of ions could be deduced from the interaction energies. © 1994 by John Wiley & Sons, Inc.  相似文献   

14.
Abstract

The vapor-phase core binding energies of some tris β-diketonates of A1(III), V(III), Cr(III), and Fe(III) and of two β-diketones have been measured. The rather large shifts observed for the A1 2p energies are believed to be caused mainly by changes in the electrostatic potential at the A1 atom due to changes in the charges of the ligand atoms. Considerable resonance relaxation energy is associated with the core ionization of the carbonyl carbon atoms and the CH carbon atoms. The data for the metal hexafluoroacetylacetonates show that the metal d orbitals are not significantly involved in the bonding and suggest that there is no strong ligand → metal donor bonding.  相似文献   

15.
The charge scaling effect in ionic liquids was explored on the basis of experimental and theoretical charge‐density analyses of [C1MIM][C1SO4] employing the quantum theory of atoms in molecules (QTAIM) approach. Integrated QTAIM charges of the experimental (calculated) charge density of the cation and anion resulted in non‐integer values of ±0.90 (±0.87) e. Efficient charge transfer along the bond paths of the hydrogen bonds between the imidazolium ring and the anion was considered as the origin of these reduced charges. In addition, a detailed QTAIM analysis of the bonding situation in the [C1SO4]? anion revealed the presence of negative πO→σ*S‐O hyperconjugation.  相似文献   

16.
17.
Linear correlations have been found between the ΔG0 values of the molecular complexes R1R2R3PO/I2, R1R2SO/I2 and R1R2SeO/I2 and the PO, SO and SeO valence force constants, respectively. The nature of the correlation is determined by the ZO donor bond and not by the donor atom, where Z is P, S or Se. The change on ΔG0 values for an equal change in the ZO valence force constants increases in the order R1R2SO/I2?R1R2R3PO/I2 < R1 R2SeO/I2. Seleninyl complexes with I2 are more stable than the analogous thionyl complexes. From ΔG0fzo correlation deductions can be made about the nature of the ZO donor bond and ΔG0 values can be evaluated from vibrational spectra. A linear correlation exists between the ΔG0 values of corresponding thionyl and seleninyl complexes which is of the same form as the correlation between the valence force constants of analogous thionyl and seleninyl compounds.  相似文献   

18.
Calculations within the framework of the interacting quantum atoms (IQA) approach have shown that the interactions of the helium atom with both tertiary, tC, and secondary, sC, carbon atoms in the metastable He@adamantane (He@adam) endohedral complex are bonding in nature, whereas the earlier study performed within the framework of Bader’s quantum theory of atoms in molecules (QTAIM) revealed that only He???tC interactions are bonding. The He???tC and He???sC bonding interactions are shown to be forced by the high pressure that the helium and carbon atoms exert upon each other in He@adam. The occurrence of a bonding interaction between the helium and sC atoms, which are not linked by a bond path, clearly shows that the lack of a bond path between two atoms does not necessarily indicate the lack of a bonding interaction, as is asserted by QTAIM. IQA calculations showed that not only the destabilization of the adamantane cage, but also a huge internal destabilization of the helium atom, contribute to the metastability of He@adam, these contributions being roughly equal. This result disproves previous opinions based on QTAIM analysis that only the destabilization of the adamantane cage accounts for the endothermicity of He@adam. Also, it was found that there is no homeomorphism of the ρ( r ) and ‐v( r ) fields of He@adam. Comparison of the IQA and QTAIM results on the interactions in He@adam exposes other deficiencies of the QTAIM approach. The reasons for the deficiencies in the QTAIM approach are analyzed.  相似文献   

19.
We have investigated the complexation behavior of preorganized 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) based ligands with trivalent lanthanides and actinides using density functional theory with various GGA type exchange-correlation functionals and different basis sets. New ligands have been designed from PDA through functionalization with soft donor atoms such as sulfur, resulting in mono-thio-dicarboxylic acids (TCA/TCA1) and di-thio-dicarboxylic acid (THIO). It has been found that selectivity in terms of complexation energy of actinides over lanthanides is the maximum with TCA1 where the metal-ligand binding is through the O atoms. This unusual feature where a softer actinide metal ion is bonded strongly with hard donor oxygen atoms has been explained using the popular chemical concepts, viz., Pearson's Hard-Soft-Acid-Base (HSAB) principle and the frontier orbital theory of chemical reactivity as proposed by Fukui. Detailed analysis within the framework of the HSAB principle indicates that the presence of softer nitrogen atoms in the phenanthroline moiety (which also act as donors to the metal ion) has a profound influence in changing the soft nature of the actinide ion, which in turn binds with the hard oxygen atoms in a stronger way as compared to the valence isoelectronic lanthanide ion. Also, the trends in the variation of calculated values of the metal-ligand bond distances and the corresponding complex formation energies have been rationalized using the Fukui reactivity indices corresponding to the metal ions and the donor sites. All the calculations have also been done in the presence of solvent. The "intra-ligand synergistic effect" demonstrated here for PDA or TCA1 with soft and hard donor centers might be very important in designing new ligands for selective extraction of various metal ions in a competitive environment. However, for TCA and THIO ligands with only soft donor centers, "intra-ligand synergism" may not be very efficient although reports are available demonstrating soft-soft inter-ligand synergism. Nevertheless, in the case of TCA and THIO complexes, a shorter Am-S bond distance in conjunction with lower metal ion charge and a higher percentage of orbital interaction energy corroborate the presence of a higher degree of covalency in Am-S bonds, which in turn may be responsible for selectivity towards Am(3+).  相似文献   

20.
Thermodynamic knowledge of the metal–ligand (M−L) σ-bond strength is crucial to understanding metal-mediated transformations. Here, we developed a method for determining the Pd−X (X=OR and NHAr) bond heterolysis energies (ΔGhet(Pd−X)) in DMSO taking [(tmeda)PdArX] (tmeda=N,N,N′,N′-tetramethylethylenediamine) as the model complexes. The ΔGhet(Pd−X) scales span a range of 2.6–9.0 kcal mol−1 for ΔGhet(Pd−O) values and of 14.5–19.5 kcal mol−1 for ΔGhet(Pd−N) values, respectively, implying a facile heterolytic detachment of the Pd ligands. Structure-reactivity analyses of a modeling Pd-mediated X−H bond activation reveal that the M−X bond metathesis is dominated by differences of the X−H and Pd−X bond strengths, the former being more influential. The ΔGhet(Pd−X) and pKa(X−H) parameters enable regulation of reaction thermodynamics and chemoselectivity and diagnosing the probability of aniline activation with Pd−X complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号