首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
D.S. Krotov   《Discrete Mathematics》2008,308(14):3104-3114
From cosets of binary Hamming codes we construct diameter perfect constant-weight ternary codes with weight n-1 (where n is the code length) and distances 3 and 5. The class of distance 5 codes has parameters unknown before.  相似文献   

3.
Difference systems of sets (DSS) were introduced in 1971 by Levenstein for the construction of codes for synchronization, and are closely related to cyclic difference families. In this paper, algebraic constructions of difference systems of sets using functions with optimum nonlinearity are presented. All the difference systems of sets constructed in this paper are perfect and optimal. One conjecture on difference systems of sets is also presented.  相似文献   

4.
The side class structure of a perfect 1-error correcting binary code (hereafter referred to as a perfect code) C describes the linear relations between the coset representatives of the kernel of C. Two perfect codes C and C′ are linearly equivalent if there exists a non-singular matrix A such that AC = C′ where C and C′ are matrices with the code words of C and C′ as columns. Hessler proved that the perfect codes C and C′ are linearly equivalent if and only if they have isomorphic side class structures. The aim of this paper is to describe all side class structures. It is shown that the transpose of any side class structure is the dual of a subspace of the kernel of some perfect code and vice versa; any dual of a subspace of a kernel of some perfect code is the transpose of the side class structure of some perfect code. The conclusion is that for classification purposes of perfect codes it is sufficient to find the family of all kernels of perfect codes.  相似文献   

5.
It is shown that for every nonlinear perfect code C of length n and rank r with n−log(n+1)+1≤rn−1, where denotes the group of symmetries of C. This bound considerably improves a bound of Malyugin.  相似文献   

6.
The two 1-error correcting perfect binary codes, C and C are said to be equivalent if there exists a permutation π of the set of the n coordinate positions and a word such that . Hessler defined C and C to be linearly equivalent if there exists a non-singular linear map φ such that C=φ(C). Two perfect codes C and C of length n will be defined to be extended equivalent if there exists a non-singular linear map φ and a word such that
  相似文献   

7.
8.
《Discrete Mathematics》2021,344(12):112589
Let N be the set of positive integers. For a nonempty set A of integers and every integer u, denote by dA(u) the number of (a,a) with a,aA such that u=aa. For a sequence S of positive integers, let S(x) be the counting function of S. The set AN is called a perfect difference set if dA(u)=1 for every positive integer u. In 2008, Cilleruelo and Nathanson (2008) [4] constructed dense perfect difference sets from dense Sidon sets. In this paper, as a main result, we prove that: let f:NN be an increasing function satisfying f(n)2 for any positive integer n, then for every Sidon set B and every function ω(x), there exists a set AN such that dA(u)=f(u) for every positive integer u and B(x/3)ω(x)A(x)B(x/3)+ω(x) for all xCf,B,ω.  相似文献   

9.
Some results on perfect codes obtained during the last 6 years are discussed. The main methods to construct perfect codes such as the method of -components and the concatenation approach and their implementations to solve some important problems are analyzed. The solution of the ranks and kernels problem, the lower and upper bounds of the automorphism group order of a perfect code, spectral properties, diameter perfect codes, isometries of perfect codes and codes close to them by close-packed properties are considered.  相似文献   

10.
Let denote the number of times the prime number p appears in the prime factorization of the integer q. The following result is proved: If there is a perfect 1-error correcting code of length n over an alphabet with q symbols then, for every prime number .This condition is stronger than both the packing condition and the necessary condition given by the Lloyd theorem, as it for example excludes the existence of a perfect code with the parameters (n,q,e)=(19,6,1).  相似文献   

11.
A maximal partial Hamming packing of is a family of mutually disjoint translates of Hamming codes of length n, such that any translate of any Hamming code of length n intersects at least one of the translates of Hamming codes in . The number of translates of Hamming codes in is the packing number, and a partial Hamming packing is strictly partial if the family does not constitute a partition of . A simple and useful condition describing when two translates of Hamming codes are disjoint or not disjoint is proved. This condition depends on the dual codes of the corresponding Hamming codes. Partly, by using this condition, it is shown that the packing number p, for any maximal strictly partial Hamming packing of , n = 2 m −1, satisfies . It is also proved that for any n equal to 2 m −1, , there exist maximal strictly partial Hamming packings of with packing numbers n−10,n−9,n−8,...,n−1. This implies that the upper bound is tight for any n = 2 m −1, . All packing numbers for maximal strictly partial Hamming packings of , n = 7 and 15, are found by a computer search. In the case n = 7 the packing number is 5, and in the case n = 15 the possible packing numbers are 5,6,7,...,13 and 14.   相似文献   

12.
Olof Heden 《Discrete Mathematics》2006,306(16):1975-1980
Any full rank perfect 1-error correcting binary code of length n=2k-1 and with a kernel of dimension n-log(n+1)-m, where m is sufficiently large, may be used to construct a full rank perfect 1-error correcting binary code of length 2m-1 and with a kernel of dimension n-log(n+1)-k. Especially we may construct full rank perfect 1-error correcting binary codes of length n=2m-1 and with a kernel of dimension n-log(n+1)-4 for m=6,7,…,10.This result extends known results on the possibilities for the size of a kernel of a full rank perfect code.  相似文献   

13.
It is shown that transitive 1-factorizations of arc-transitive graphs exist if and only if certain factorizations of their automorphism groups exist. This relation provides a method for constructing and characterizing transitive 1-factorizations for certain classes of arc-transitive graphs. Then a characterization is given of 2-arc-transitive graphs which have transitive 1-factorizations. In this characterization, some 2-arc transitive graphs and their transitive 1-factorizations are constructed.  相似文献   

14.
If a connected component of perfect equilibria of a two-player game contains a stable set as defined by Mertens, then the component is itself stable. Thus the stable sets maximal under inclusion are connected components of perfect equilibria. Received: October 1999/Revised: February 2001  相似文献   

15.
We present generalized MacWilliams identities for binary codes. These identities naturally lead to the concepts of the local weight distribution of a binary code with respect to a word u and its MacWilliams u-transform. In the case that u is the all-one word, these ones correspond to the weight distribution of a binary code and its MacWilliams transform, respectively. We identify a word v with its support, and consider v as a subset of {1, 2,..., n}. For two words u,w of length n such that their intersection is the empty set, define the u-face centered at w to be the set . A connection between our MacWilliams u-transform and the weight distribution of a binary code in the u-face centered at the zero word is presented. As their applications, we also investigate the properties of a perfect binary code. For a perfect binary code C, the main results are as follows: first, it is proved that our local weight distribution of C is uniquely determined by the number of codewords of C in the orthogonal u-face centered at the zero word. Next, we give a direct proof for the known result, concerning the weight distribution of a coset of C in the u-face centered at the zero word, by A. Y. Vasil’eva without using induction. Finally, it is proved that the weight distribution of C in the orthogonal u-face centered at w is uniquely determined by the codewords of C in the u-face centered at the zero word.   相似文献   

16.
Functions with low differential uniformity have relevant applications in cryptography. Recently, functions with low c-differential uniformity attracted lots of attention. In particular, so-called APcN and PcN functions (generalization of APN and PN functions) have been investigated. Here, we provide a characterization of such functions via quadratic polynomials as well as non-existence results.  相似文献   

17.
Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's   总被引:3,自引:0,他引:3  

We show that the Julia set of a non-elementary rational semigroup is uniformly perfect when there is a uniform bound on the Lipschitz constants of the generators of . This also proves that the limit set of a non-elementary Möbius group is uniformly perfect when there is a uniform bound on the Lipschitz constants of the generators of the group and this implies that the limit set of a finitely generated non-elementary Kleinian group is uniformly perfect.

  相似文献   


18.
19.
Let p be a prime number and assume p ≥ 5. We will use a result of L. Redéi to prove, that every perfect 1-error correcting code C of length p + 1 over an alphabet of cardinality p, such that C has a rank equal to p and a kernel of dimension p − 2, will be equivalent to some Hamming code H. Further, C can be obtained from H, by the permutation of the symbols, in just one coordinate position.   相似文献   

20.
P. Horak 《Discrete Mathematics》2009,309(18):5551-5561
In this paper we survey recent results on the Golomb-Welch conjecture and its generalizations and variations. We also show that there are no perfect 2-error correcting Lee codes of block length 5 and 6 over Z. This provides additional support for the Golomb Welch conjecture as it settles the two smallest cases open so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号