首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
流体体积法(VOF)可以便捷、高效地实现对多相流界面的捕捉和追踪。本文基于VOF方法,对单个空化泡在曲面固壁附近的运动进行了数值模拟,从实验对比、压力场、速度场、温度场演化、溃灭时间、射流速度、固壁温度等方面分析了空化泡溃灭过程的热动力学影响。结果表明,数值模拟得到的空化泡形态演化与实验观测到的现象一致,随着位置参数、泡内外压差及曲面固壁尺寸的改变,空化泡热动力学行为也将发生变化,受到流体运动及射流冲击的影响,溃灭瞬间产生的高温高压使得曲面固壁温度升高。本文研究的曲面固壁附近空化泡溃灭效应,揭示了空化泡与曲面固壁间的相互作用规律,对学术研究及工程应用都具有重要意义。  相似文献   

2.
Thermodynamic behaviors and interactions between bubble pairs are important to better understand the cavitation phenomena. In this study, a compressible two-phase model, accounting for thermal effects to investigate the thermodynamic behaviors and interactions between bubble pairs, is developed in OpenFOAM. The volume of fluid (VOF) method is adopted to capture the interface. Validations are performed by comparing the simulation results of a single bubble and bubble pairs with corresponding experimental data. The dynamical behaviors of bubble pairs and their thermodynamic effect at different relative distances γ are investigated and discussed, which help reveal the bubble cloud dynamics. The quantitative analysis of γ effects on the maximum temperature during bubble collapse is performed with three distinct stages identified. For a single bubble collapsing near the rigid surface, the thermodynamic characteristics at different relative distances are similar to that of the bubble pairs, but the maximum temperature is higher since the single bubble can collapse to a smaller volume.  相似文献   

3.
格子Boltzmann方法伪势多相模型具有高效性和复杂几何边界实施的简易性。该文采用改进作用力的伪势多相模型,通过优化参数实现最大程度的热力学一致性,进而提高模型的密度比和稳定性。分别从伪速度、网格不变性、Young-Laplace验证等方面研究了改进模型的性能。通过改进的模型模拟了复杂几何固壁附近空泡溃灭过程。分析了空化泡溃灭阶段的密度场、压力场和速度场演化过程,以及复杂几何固壁附近的空泡动力学特性。结果表明伪势格子Boltzmann方法在探索空泡溃灭和复杂几何固壁间的相互作用规律研究中是一种有效的工具。  相似文献   

4.
超声场下刚性界面附近溃灭空化气泡的速度分析   总被引:3,自引:0,他引:3       下载免费PDF全文
郭策  祝锡晶  王建青  叶林征 《物理学报》2016,65(4):44304-044304
为了揭示刚性界面附近气泡空化参数与微射流的相互关系, 从两气泡控制方程出发, 利用镜像原理, 建立了考虑刚性壁面作用的空化泡动力学模型. 数值对比了刚性界面与自由界面下气泡的运动特性, 并分析了气泡初始半径、气泡到固壁面的距离、声压幅值和超声频率对气泡溃灭的影响. 在此基础上, 建立了气泡溃灭速度和微射流的相互关系. 结果表明: 刚性界面对气泡振动主要起到抑制作用; 气泡溃灭的剧烈程度随气泡初始半径和超声频率的增加而降低, 随着气泡到固壁面距离的增加而增加; 声压幅值存在最优值, 固壁面附近的气泡在该最优值下气泡溃灭最为剧烈; 通过研究气泡溃灭速度和微射流的关系发现, 调节气泡溃灭速度可以达到间接控制微射流的目的.  相似文献   

5.
6.
The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received inereasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan-Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young-Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.  相似文献   

7.
The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng–Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine.  相似文献   

8.
单鸣雷  朱昌平  姚澄  殷澄  蒋小燕 《中国物理 B》2016,25(10):104701-104701
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.  相似文献   

9.
The violent collapse of inertial bubbles generates high temperature inside and emits strong impulsive pressure. Previous tests on sonoluminescence and cavitation erosion showed that the influence of liquid temperature on these two parameters is different. In this paper, we conducted a bubble dynamic analysis to explore the mechanism of the temperature effect and account for the above difference. The results show that the increase of vapor at higher liquid temperatures changes both the external compression pressure and the internal cushion and is responsible for the variation of bubble collapse intensity. The different trends of the collapsing temperature and emitted sound pressure are caused by the energy distribution during the bubble collapse. Moreover, a series of simulations are conducted to establish the distribution map of the optimum liquid temperature where the collapse intensity is maximized. The relationship between the collapse intensity and the radial dynamics of the bubble is discussed and the reliable indicator is identified. This study provides a clear picture of how the thermodynamic process changes cavitation aggressiveness and enriches the understanding of this complex thermal-hydrodynamic phenomenon.  相似文献   

10.
Prevenslik TV 《Ultrasonics》2003,41(4):313-317
Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature.  相似文献   

11.
A simple new model of the spatial distribution of the liquid temperature near a cavitation bubble wall (Tli) is employed to numerically calculate Tli. The result shows that Tli is almost same with the ambient liquid temperature (T0) during the bubble oscillations except at strong collapse. At strong collapse, Tli can increase to about 1510 K, the same order of magnitude with that of the maximum temperature inside the bubble, which means that the chemical reactions occur not only in gas-phase inside the collapsing bubble but also in liquid-phase just outside the collapsing bubble. Four factors (ultrasonic vibration amplitude, ultrasonic frequency, the surface tension and the viscosity) are considered to study their effects for the thin liquid layer. The results show that for the thin layer, the thickness and the temperature increase as the ultrasonic vibration amplitude rise; conversely, the thickness and the temperature decrease with the increase of the ultrasonic frequency, the surface tension or the viscosity.  相似文献   

12.
刘秀梅  贺杰  陆建  倪晓武 《物理学报》2009,58(6):4020-4025
表面张力是影响空泡脉动及空蚀的一个重要因素.对五种不同表面张力液体中空泡脉动(膨胀和收缩)过程进行了研究,并将实验结果与基于空泡生长和溃灭理论的计算结果进行了对比.实验中,用激光作为测试光源,采用光偏转测试系统研究了不同表面张力液体中空泡泡壁运动规律及泡壁速度的变化.结果表明:表面张力对空泡膨胀过程起抑制作用,故液体表面张力愈大,空泡能达到的最大直径越小;表面张力对空泡的收缩过程则起加速作用,液体表面张力愈大,收缩越迅速,空泡泡壁运动速度越大,其所产生的瞬时溃灭压强越大,空化效果越好. 关键词: 表面张力 空泡 光偏转  相似文献   

13.
In the preceding paper (part 1), the pressure and temperature fields close to a bubble undergoing inertial acoustic cavitation were presented. It was shown that extremely high liquid water pressures but quite moderate temperatures were attained near the bubble wall just after the collapse providing the necessary conditions for ice nucleation. In this paper (part 2), the nucleation rate and the nuclei number generated by a single collapsing bubble were determined. The calculations were performed for different driving acoustic pressures, liquid ambient temperatures and bubble initial radius. An optimal acoustic pressure range and a nucleation temperature threshold as function of bubble radius were determined. The capability of moderate power ultrasound to trigger ice nucleation at low undercooling level and for a wide distribution of bubble sizes has thus been assessed on the theoretical ground.  相似文献   

14.
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.  相似文献   

15.
We review recent work on the use of sonoluminescence (SL) to probe spectroscopically the conditions created during cavitation, both in clouds of collapsing bubbles (multibubble sonoluminescence, (MBSL)) and in single bubble events. The effective MBSL temperature can be controlled by the vapor pressure of the liquid or the thermal conductivity of the dissolved gas over a range from ~1600 to ~9000K. The effective pressure during MBSL is ~300bar, based on atomic line shifts. Given nanosecond emission times, this means that cooling rates are >10(12)K/s. In sulfuric and phosphoric acid, the low volatility and high solubility of any sonolysis products make bubble collapse more efficient and evidence for an optically opaque plasma core is found.  相似文献   

16.
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.  相似文献   

17.
In the present paper, the collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall is experimentally investigated with a high-speed photography system. For a symmetrical setup, the two primary control parameters of the bubble collapsing behavior include the equivalent maximum bubble radius and the distance between the bubble and the edge of the rigid wall. Based on the bubble interface deformation during the collapsing process, three typical cases are identified for the categorization of the phenomenon with the influences of the parameters revealed. Through a quantitative analysis of the obtained high-speed photos, the motions of the bubble interface in different directions are given together with the calculations of the bubble centroid. The primary findings of the present paper could be summarized in terms of the bubble-edge distance as follows. When the bubble is close to the edge, the movement of the bubble interface near the edge will be restricted with a clear neck formation in the middle part of the bubble. For this case, the edge could delay the bubble collapsing time up to 22% of the Rayleigh collapsing time. When the bubble is of the medium distance to the edge, the differences of the expansion or shrinkage of the bubble interface among different directions will be reduced with an olive-shaped bubble formed during the collapsing process. For this range of parameters, the bubble moves rapidly toward the edge especially during the final collapsing stage. When the bubble is far away from the edge, the bubble will be a nearly spherical one.  相似文献   

18.
Ultrasonic impregnation is thought to be an effective way of permeation of liquid into material through the material-surface reforming with the attack by an ultrasonic cavitation jet or by the shock wave emitted from a collapsing bubble, or through dynamic transformation of material like a sponge. The action of a cavitation bubble can also provide penetration of liquid into the interior of the material. This paper investigates whether there is a correlation between the intensity of sonoluminescence (SL) measured at different positions and the increment in the mass of the wood material (cedar) after sonication with immersion into water in order to clarify the role of cavitation bubbles for ultrasonic impregnation. It was found that a high mass change was obtained for the material located at the position for high (the maximum) SL intensity. The number density of ultrasonic cavitation bubbles that are able to collapse leading to the emission of SL is correlated with the degree of ultrasonic impregnation.  相似文献   

19.
空化单气泡外围压强分布   总被引:10,自引:0,他引:10       下载免费PDF全文
刘海军  安宇 《物理学报》2004,53(5):1406-1412
关键词:  相似文献   

20.
The theory of local electrification of cavitation bubbles has been generalised. The major cases for a local electrification of bubbles in a cavitation field were considered; i.e., fragmentation and deformation of cavitation bubbles. The splitting of cavitation bubbles was considered taking into account surface tension, bubble perturbation, Stokes force and electrostatic forces between like charges on the wall of the collapsing neck of the fragment bubble. The problem of the uncompensated charge on the surface of the deformed cavitation bubble is solved. For this purpose radial deformations are considered in terms of the paraboloid of rotation and axial deformation approximated by one cavity hyperboloid of rotation. The maximum electric strength is accounted for. An explanation for some physical and physico-chemical effects in cavitation fields is proposed in terms of the electrical theory of the local electrification of cavitation bubbles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号