首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limited data are published regarding changes in the physicochemical properties of rice flours from germinated de-hulled rice treated by ultrasound. This work was undertaken to evaluate the effect of ultrasound treatment (25 kHz, 16 W/L, 5 min) on starch hydrolysis and functional properties of rice flours produced from ultrasound-treated red rice and brown rice germinated for up to 36 h. Environmental Scanning Electron Microscopy (ESEM) microimages showed that the ultrasound treatment altered the surface microstructure of rice, which helped to improve moisture transfer during steam-cooking. The flours from sonicated germinated de-hulled rice exhibited significantly (p < .05) enhanced starch hydrolysis, increased the glucose content, and decreased falling number values and viscosities determined by a Rapid Visco Analyzer. The amylase activity of the germinating red rice and brown rice displayed different sensitivity to ultrasonic treatment. The ultrasonic pre-treatment resulted in a significant reduction in energy use during germination with a potential to further reduce energy use in germinated rice cooking process. The present study indicated that ultrasound could be a low-power consumption method to modify the rheological behavior of germinated rice flour, as well as an efficient approach to improve the texture, flavor, and nutrient properties of steam-cooked germinated rice.  相似文献   

2.
As a non-thermal processing method, the ultrasound treatment prior to the frying process has been demonstrated with great potential in reducing the oil absorption of fried food. This research aimed to evaluate the effect of ultrasound pretreatment on starch properties, water status, pore characteristics, and the oil absorption of potato slices. Ultrasound probe set with two power (360 W and 600 W) at the frequency of 20 kHz for 60 min was applied to perform the pretreatments. The results showed that ultrasound pretreatment led to the surface erosion of starch granules and higher power made the structure of starch disorganized. Moreover, the fraction of bound water and immobilized water were changed after ultrasonic pretreatment. Pores with the minor diameters (0.4–3 μm and 7–12 μm) were formed after ultrasound pretreatment. The penetrated surface oil (PSO) content, and structure oil (STO) content were reduced by 27.31% and 22.25% respectively with lower power ultrasound pretreatment. As the ultrasound power increased, the surface oil (SO) content and PSO content increased by 25.34% and 12.89% respectively, while STO content decreased by 38.05%. By using ultrasonic prior to frying, the quality of potato chips has been greatly improved.  相似文献   

3.
In this study, the influence of ultrasound on the physicochemical and functional properties of guamuchil seed protein isolate (GSPI) was investigated. The GSPI was prepared by alkaline extraction and isoelectric precipitation method followed by treating with ethanol (95%), from defatted guamuchil seed flour. GSPI suspensions (10%) were sonicated with a probe (20 kHz) at 3 power levels (200 W, 400 W, 600 W) for 15 and 30 min, in addition, to control treatment without ultrasound. Moisture content, water activity, bulk and compact densities and the L*, a* and b* color parameters of the GSPI decreased due to the ultrasound. Glutelin (61.1%) was the main protein fraction in GSPI. Results through Fourier transform infrared and fluorescence spectroscopy showed that ultrasound modified the secondary and tertiary protein structures of GSPI, which increased the surface hydrophobicity, molecular flexibility and in vitro digestibility of GSPI proteins by up to 114.8%, 57.3% and 12.5%, respectively. In addition, maximum reductions of 11.9% in particle size and 55.2% in turbidity of GSPI suspensions, as well as larger and more porous aggregates in GSPI lyophilized powders were observed by ultrasound impact. These structural and physicochemical changes had an improvement of up to 115.5% in solubility, 39.8% in oil absorption capacity, while the increases for emulsifying, foaming, gelling, flow and cohesion properties of GSPI were 87.4%, 74.2%, 40.0%, 44.4%, and 8.9%, respectively. The amelioration of the functional properties of GSPI by ultrasound could represent an alternative for its possible use as a food ingredient in industry.  相似文献   

4.
Sagittaria sagittifolia L. is a well-known plant, belongs to the Alismataceae family. Sonication can improve the functional properties of starch; hence, the aim of this study was to develop ultrasonically modified arrowhead starch (UMAS) using a sophisticated and eco-friendly tri-frequency power ultrasound (20/40/60 kHz) method at 300, 600, and 900 W for 15 and 30 min. Significant (p < 0.05) increases in swelling power, solubility, and water and oil holding capacities were achieved. FTIR spectroscopy corroborated the ordered, amorphous, and hydrated crystals of the sonicated samples. Increases in sonication frequency and power led to significant (p < 0.05) increases in onset gelatinization temperatures. Scanning electron microscopic analysis of sonicated samples showed superficial cracks and roughness on starch granules appeared in a sonication power-dependent manner compared with that of untreated sample. Overall, the ultrasonically-treated samples showed improved physicochemical properties, which could be useful for industrial applications.  相似文献   

5.
In this study, the starch molecules were modified with ultrasonication at two different time intervals by using starch molecules from corn and cassava. This research aimed to examine the effect of the high power ultrasound of 40 kHz voltage and frequency with short time duration on structural and physical properties of corn and cassava starch. Morphology of ultrasonically treated starch granules was observed by scanning electron microscopy (SEM), FTIR, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) and compared with untreated samples. After the ultrasound treatment groove and notch appeared on the surface of the starch granules. The results showed that gelatinization temperature did not change with ultrasound treatments, but enthalpy value decreased from 13.15 ± 0.25 J/g to 11.5 ± 0.29 J/g and 12.65 ± 0.32 J/g to 10.32 ± 0.26 J/g for sonicated corn and cassava starches, respectively. The XRD results revealed a slight decreased in the crystallinity degree (CD) of sonicated corn (25.3,25.1) and cassava starch (21.0,21.4) as compared to native corn (25.6%) and cassava starch (22.2%). This study suggests that non-thermal processing techniques have the potential to modify the starch from different sources and their applications due to starch’s versatility, low cost, and comfort of use after processing with altered physicochemical properties.  相似文献   

6.
Ultrasonic study of wheat flour properties   总被引:1,自引:0,他引:1  
In this work, the wheat flour properties are investigated using ultrasound techniques. Moreover, the flour samples were also characterized by means of well established techniques such as protein content, Alveograph and Mixolab®. A set of 35 dough samples, made of wheat flours with diverse physical and quality properties, were studied. The obtained results shown that ultrasound measurements can detect changes in the dough consistency induced by proteins and also by gelatinization of the starch. Furthermore, ultrasound measurements can be related to parameters indicative of the proteolytic degradation or softening of the dough due to protease activity. Thus, ultrasound can be considered a low cost and rapid tool, complementary to conventional test, for wheat flour characterization.  相似文献   

7.
Ultrasound treatment has been a good hurdle technique for meat curing processing, where both physical and chemical consequences can be involved towards final quality of obtained products. However, the specific correlation between ultrasound parameters and muscle fiber fragmentation and myofibrillar microstructural changes during curing deserve further evaluation. In present study, we comparatively studied the effect of ultrasound-assisted brining (UAB) and static brining (SB) on the muscle proteolysis events and microstructural/morphological variation of porcine meat as well as the physicochemical indices and histological characteristics. The results showed that UAB (20 kHz, 315 W for 1 h) could markedly enhance the muscle proteolysis with higher free-/peptide-bound alpha-amino-nitrogen (α-NH2-N) content (P < 0.05) than SB treatment and greatly improved the fragmentation of muscle fiber tissues of cured meat. Meanwhile, UAB processing favored more opening structures of myofibrillar proteins with more hydrophobic groups being exposed. The quantitative histological analysis revealed that, compared with SB treatment, UAB could significantly increase the gap between muscle fibers and the swelling of the perimysium (P < 0.01), proving an efficient curing process with better textural and water holding properties.  相似文献   

8.
White rice samples, Chai-Nat1 (CN1) and Jasmin rice (KDML105), were treated with the ultrasound-chilling (UC) and combined with annealing treatments (UC + ANN 45, UC + ANN50, and UC + ANN55). Their physicochemical properties and in vitro glycemic index of rice samples were analyzed. UC + ANN treatments presented pasting temperature, gelatinization temperature and crystallinity increased whereas the glycemic index of both rice samples was decreased as compared to its native. Especially, UC + ANN55 treated rice produced the lowest glycemic index and starch hydrolysis. Moreover, UC + ANN treated CN1 rice exhibited delayed gelatinization temperature, increased gelatinization enthalpy, and decreased glycemic index than KDML105 rice. In addition, Pearson’s correlation presented that UC + ANN and amylose content had a highly negative correlation with the glycemic index at p < 0.0.1. The result exhibited that UC followed by ANN show an effective way to modify starch granules with delayed starch hydrolysis reduced glycemic index and properties depending on annealing temperature and rice cultivar.  相似文献   

9.
Highland barley is a grain crop grown in Tibet, China. This study investigated the structure of highland barley starch using ultrasound (40 kHz, 40 min, 165.5 W) and germination treatments (30℃ with 80% relative humidity). The macroscopic morphology and the barley's fine and molecular structure were evaluated. After sequential ultrasound pretreatment and germination, a significant difference in moisture content and surface roughness was noted between highland barley and the other groups. All test groups showed an increased particle size distribution range with increasing germination time. FTIR results also indicated that after sequential ultrasound pretreatment and germination, the absorption intensity of the intramolecular hydroxyl (–OH) group of starch increased, and hydrogen bonding was stronger compared to the untreated germinated sample. In addition, XRD analysis revealed that starch crystallinity increased following sequential ultrasound treatment and germination, but a-type of crystallinity remained after sonication. Further, the Mw of sequential ultrasound pretreatment and germination at any time is higher than that of sequential germination and ultrasound. As a result of sequential ultrasound pretreatment and germination, changes in the content of chain length of barley starch were consistent with germination alone. At the same time, the average degree of polymerisation (DP) fluctuated slightly. Lastly, the starch was modified during the sonication process, either prior to or following sonication. Pretreatment with ultrasound illustrated a more profound effect on barley starch than sequential germination and ultrasound treatment. In conclusion, these results indicate that sequential ultrasound pretreatment and germination improve the fine structure of highland barley starch.  相似文献   

10.
The effect of ultrasound treatment (300 W; 0, 5, 10, 15, 20 and 25 min) on the extractability of acid soluble collagen from yellowfin tuna skin and its structural, physicochemical and functional properties were investigated. Ultrasound treatments significantly increased collagen extraction yield from the tuna skin up to 2.7 times, compared to the conventional extraction with acetic acid. The level of proline, hydroxyproline and thermal stability of collagens increased by applying ultrasound while their native triple-stranded helical structure was well-preserved, as revealed by X-ray diffraction and FTIR spectroscopy. However, ultrasound treatment reduced the particle size of the collagens which increased their pH and salt induced solubility. The water holding capacity and the emulsifying properties of ultrasound treated collagens were also higher than those produced with the conventional method. Altogether, the results suggested that ultrasonication can be a promising assistant technology for improving native collagen extraction efficiency from tuna skin and its functionality but its duration should be carefully optimized.  相似文献   

11.
The controllable ultrasonic modification was hindered due to the uncertainty of the relationship between ultrasonic parameters and polysaccharide quality. In this study, the ultrasonic degradation process was established with kinetics. The physicochemical properties and prebiotic activity of ultrasonic degraded Flammulina velutipes polysaccharides (U-FVPs) were investigated. The results showed that the ultrasonic degradation kinetic models were fitted to 1/Mt-1/M0 = kt. When the ultrasonic intensity increased from 531 to 3185 W/cm2, the degradation proceeded faster. The decrease of polysaccharide concentration contributed to the degradation of FVP, and the fastest degradation rate was at 60 °C. Ultrasound changed the solution conformation of FVP, and partially destroyed the stability of the triple helix structure of FVP. Additionally, the viscosity and gel strength of FVP decreased, but its thermal stability was improved by ultrasound. Higher ultrasonic intensity led to larger variations in physicochemical properties. Compared with FVP, U-FVPs could be more easily utilized by gut microbiota. U-FVPs displayed better prebiotic activity by promoting the growth of Bifidobacterium and Brautella and inhibiting the growth of harmful bacteria. Ultrasound could be effectively applied to the degradation of FVP to improve its physicochemical properties and bioactivities.  相似文献   

12.
Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.  相似文献   

13.
Qingke protein rich in restricted amino acids such as lysine, while the uncoordination of ratio of glutenin and gliadin in Qingke protein has a negative impact on its processing properties. In this study, the effect of multiple-frequency ultrasound combined with transglutaminase treatment on the functional and structural properties of Qingke protein and its application in noodle manufacture were investigated. The results showed that compared with the control, ultrasound-assisted transglutaminase dual modification significantly increased the water and oil holding capacity, apparent viscosity, foaming ability, and emulsifying activity index of Qingke protein, which exhibited a higher storage modulus G' (P < 0.05). Meanwhile, ultrasound combined with transglutaminase treatment enhanced the cross-linking degree of Qingke protein (P < 0.05), as shown by decreased free amino group and free sulfhydryl group contents, and increased disulfide bond content. Moreover, after the ultrasound-assisted transglutaminase dual modification treatment, the fluorescence intensity, the contents of α-helix and random coil in the secondary structure of Qingke protein significantly decreased, while the β-sheet content increased (P < 0.05) compared with control. SDS-PAGE results showed that the bands of Qingke protein treated by ultrasound combined with transglutaminase became unclear. Furthermore, the quality of Qingke noodles made with Qingke powder (140 g/kg dual modified Qingke protein mixed with 860 g/kg extracted Qingke starch) and wheat gluten 60–70 g/kg was similar to that of wheat noodles. In summary, multiple-frequency ultrasound combined with transglutaminase dual modification can significantly improve the physicochemical properties of Qingke protein and the modified Qingke proteins can be used as novel ingredients for Qingke noodles.  相似文献   

14.
In this study, a novel citral nanoemulsion (CLNE) was prepared by ultrasonic emulsification. The synergistic antibacterial mechanism of ultrasound combined with CLNE against Salmonella Typhimurium and the effect on the physicochemical properties of purple kale were investigated. The results showed that the combined treatment showed obviously inactivate effect of S. Typhimurium. Treatment with 0.3 mg/mL CLNE combined with US (20 kHz, 253 W/cm2) for 8 min reduced S. Typhimurium populations in phosphate-buffered saline (PBS) by 9.05 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release assays showed that the US combination CLNE disrupt the integrity of S. Typhimurium membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) detection indicated that US+CLNE exacerbated oxidative stress and lipid peroxidation in cell membranes. The morphological changes of cells after different treatments by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) illustrated that the synergistic effect of US+CLNE treatment changed the morphology and internal microstructure of the bacteriophage cells. Application of US+CLNE on purple kale leaves for 6 min significantly (P < 0.05) reduced the number of S. Typhimurium, but no changes in the physicochemical properties of the leaves were detected. This study elucidates the synergistic antibacterial mechanism of ultrasound combined with CLNE and provides a theoretical basis for its application in food sterilization.  相似文献   

15.
In this study, the effects of ultrasound treatment on the texture, physicochemical properties and protein structure of composite gels prepared by salted egg white (SEW) and cooked soybean protein isolate (CSPI) at different ratios were investigated. With the increased SEW addition, the ζ-potential absolute values, soluble protein content, surface hydrophobicity and swelling ratio of composite gels showed overall declining trends (P < 0.05), while the free sulfhydryl (SH) contents and hardness of exhibited overall increasing trends (P < 0.05). Microstructural results revealed that composite gels exhibited denser structure with the increased SEW addition. After ultrasound treatment, the particle size of composite protein solutions significantly decreased (P < 0.05), and the free SH contents of ultrasound-treated composite gels were lower than that of untreated composite gels. Moreover, ultrasound treatment enhanced the hardness of composite gels, and promoted the conversion of free water into non-flowable water. However, when ultrasonic power exceeded 150 W, the hardness of composite gels could not be further enhanced. FTIR results indicated that ultrasound treatment facilitated the composite protein aggregates to form a more stable gel structure. The improvement of ultrasound treatment on the properties of composite gels was mainly by promoting the dissociation of protein aggregates, and the dissociated protein particles further interacted to form denser aggregates through disulfide bond, thus facilitating the crosslinking and reaggregation of protein aggregates to form denser gel structure. Overall, ultrasound treatment is an effective approach to improve the properties of SEW-CSPI composite gels, which can improve the potential utilization of SEW and SPI in food processing.  相似文献   

16.
In this research, oat resistant starch (ORS) was prepared by autoclaving-retrogradation cycle (ORS-A), enzymatic hydrolysis (ORS-B), and ultrasound combined enzymatic hydrolysis (ORS-C). Differences in their structural features, physicochemical properties and digestive properties were studied. Results of particle size distribution, XRD, DSC, FTIR, SEM and in vitro digestion showed that ORS-C was a B + C-crystal, and ORS-C had a larger particle size, the smallest span value, the highest relative crystallinity, the most ordered and stable double helix structure, the roughest surface shape and strongest digestion resistance compared to ORS-A and ORS-B. Correlation analysis revealed that the digestion resistance of ORS-C was strongly positively correlated with RS content, amylose content, relative crystallinity and absorption peak intensity ratio of 1047/1022 cm−1 (R1047/1022), and weakly positively correlated with average particle size. These results provided theoretical support for the application of ORS-C with strong digestion resistance prepared by ultrasound combined enzymatic hydrolysis in the low GI food application.  相似文献   

17.
In order to understand the relationship between the aggregation structure and physicochemical characteristics of ultrasonicated sweet potato starches, sweet potato starch modified with different sonication time (15, 20, 25 and 30 min) was studied in this work for developing starch-based ingredients with tailored functionality. SEM, XRD, FTIR, Raman and DSC measurements were conducted to investigate the transformations of morphological features, crystalline structure, short-range ordered structure and ordered molecular structure of starch granules. Not only could pores and cracks be observed at the surface of starch, but also the structural disorganizations were more evidently induced with the treatment time increasing, especially for the degrees of crystallinity, short-range molecular orders and ordered molecular structures. And these disordering in the aggregation structure not only increased the swelling power and solubility but also declined the pasting temperature, peak viscosity, final and breakdown viscosity of gelatinized starch. In addition, the strengthened retrogradation and gel structures formed by the rearrangement and entanglement of starch polymer chains also demonstrated the structural disorganizations of starch granules during ultrasonic treatment. Therefore, the results of this study may provide further insight in understanding the structural basis of starch physicochemical properties.  相似文献   

18.
A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface.  相似文献   

19.
Currently, as a promising alternative protein source, the interest of edible insect protein has been continuously increased. However, the extraction processing had distinct effects on the physicochemical properties and functionalities of this novel and sustainable protein. In this study, Tenebrio molitor larvae protein (TMLP) was extracted via ultrasound (US)-assisted alkaline extraction. The changes of extraction kinetics, physicochemical characteristics, and functional properties of TMLP as a function of US time (10, 20, 30, 40, 50 min) were investigated. The results showed that 30 min US treatment rendered the maximum protein yield (60.04 %) (P < 0.05). Meanwhile, Peleg's model was considered a suitable model to represent the extraction kinetics of TMLP, with a correlation coefficient of 0.9942. Moreover, the protein secondary structure, particle size, and amino acid profiles of TMLP were changed under the US-assisted alkaline extraction process. Additionally, a significant improvement of the functional properties of TMLP extracted with this method was observed compared to traditional alkaline extraction. In conclusion, the present work suggests that US-assisted alkaline extraction could be considered as a potential method to improve the protein yield, quality profiles, and functional properties of TMLP.  相似文献   

20.
Lotus seed starch nanoparticles were prepared by ultrasonic (ultrasonic power: 200 W, 600 W, 1000 W; time: 5 min, 15 min, 25 min; liquid ratio (starch: buffer solution): 1%, 3%, 5%) assisted enzymatic hydrolysis (LS-SNPs represent lotus seed starch nanoparticles prepared by enzymatic hydrolysis and U-LS-SNPs represent lotus seed starch nanoparticles prepared by high pressure homogenization-assisted enzymatic hydrolysis). The structure and physicochemical properties of U-LS-SNPs were studied by laser particle size analysis, scanning electron microscope, X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance and gel permeation chromatography system. The results of scanning electron microscopy showed that the surface of U-LS-SNPs was cracked and uneven after ultrasonic-assisted enzymolysis, and there was no significant difference from LS-SNPs. The results of particle size analysis and gel permeation chromatography showed that the particle size of U-LS-SNPs (except 5% treatment group) was smaller than that of LS-SNPs. With the increase of ultrasonic power and time, the weight average molecular gradually decreased. The results of X-ray diffraction and Raman spectroscopy showed that ultrasonic waves first acted on the amorphous region of starch granules. With the increase of ultrasonic power and time, the relative crystallinity of U-LS-SNPs increased first and then decreased. The group (600 W, 15 min, 3%) had the highest relative crystallinity. The results of nuclear magnetic resonance studies showed that the hydrogen bond and double helix structure of starch were destroyed by ultrasound, and the double helix structure strength of U-LS-SNPs was weakened compared with LS-SNPs. In summary, U-LS-SNPs with the small-sized and the highest crystallinity can be prepared under the conditions of ultrasonic power of 600 W, time of 15 min and material-liquid ratio of 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号