首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yttria coated graphite crucibles are widely used to handle molten refractory and radioactive metals like uranium and plutonium. However, the coated layer suffers damages like cracking and peeling off owing to thermal cycles. As a result, removal of the yttria layer from the graphite surface is essential to ensure reuse of the crucible and minimization of radioactive waste. The present work investigates intensified dissolution of yttria from the coated graphite samples using ultrasound as a non-destructive decontamination technique to recycle the graphite substrate. The optimum conditions established for maximum dissolution were 8 M as acid strength, frequency of 30 kHz, temperature of 45 °C and power density of 8 W cm−2 that resulted in maximum dissolution of 52% in 30 min. Use of an oxidant H2O2 to the acid, did not yield any improvement in the dissolution kinetics, instead, increased oxidation of the graphite substrate was observed, leading to the anomalous weight gain of the graphite substrate despite surface erosion. Effect of ultrasound on the dissolution was pronounced, with almost a threefold increase compared to dissolution performed under silent conditions. Rates of dissolution of yttria from the substrate of different densities and pore size distribution were also studied. The dissolution was slowest from graphite of density 1.82 g cm−3 as the pore size distribution was conducive to accommodate the yttria particles. The dissolution in nitric acid followed ash layer diffusion controlled kinetics. The study has demonstrated the efficacy of application of ultrasound for accelerated decontamination of graphite substrates.  相似文献   

2.
The influences of multi-frequency countercurrent S-type ultrasound (MFSU), with various frequency modes, on lysinoalanine (LAL) formation and conformational characteristics of rice dreg protein isolates (RDPI) were investigated. The ultrasonic operating mode with dual-frequency combination (20/40 kHz) indicated lower LAL content and higher protein dissolution rate of RDPI compared with that of other ultrasound operating modes. Under the dual-frequency ultrasound mode of 20/40 kHz, acoustic power density of 60 W/L, time of 20 min, and temperature of 35 °C, the relative reduction rate of LAL of RDPI reached the highest with its value of 26.95%, and the protein dissolution rate was 71.87%. The changes in chemical interactions between protein molecules indicated that hydrophobic interactions and disulfide bonds played a considerable role in the formation of LAL of RDPI, especially the reduction of g-g-g and g-g-t disulfide bond. Alterations in microstructure showed that ultrasonication loosened the protein structure and created more uniform protein fragments of RDPI. In conclusion, using MFSU in treating RDPI was an efficacious avenue for minimizing LAL content and modifying the conformational characteristics of RDPI.  相似文献   

3.
Use of nanomaterials to remove uranium by adsorption from nuclear wastewater is widely applied, though not much work is focused on the recovery of uranium from the sorbents. The present work reports the recovery of adsorbed uranium from the microstructures of silica nanoparticles (SiO2M) and its functionalized biohybrid (fBHM), synthesized with Streptococcus lactis cells and SiO2M, intensified using ultrasound. Effects of temperature, concentration of leachant (nitric acid), sonic intensity, and operating frequency on the recovery as well as kinetics of recovery were thoroughly studied. A comparison with the silent operation demonstrated five and two fold increase due to the use of ultrasound under optimum conditions in the dissolution from SiO2M and fBHM respectively. Results of the subsequent adsorption studies using both the sorbents after sonochemical desorption have also been presented with an aim of checking the efficacy of reusing the adsorbent back in wastewater treatment. The SiO2M and fBHM adsorbed 69% and 67% of uranium respectively in the second cycle. The adsorption capacity of fBHM was found to reduce from 92% in the first cycle to 67% due to loss of adsorption sites in the acid treatment. Recovery and reuse of both the nuclear material and the sorbent (with some make up or activation) would ensure an effective nuclear remediation technique, catering to UN's Sustainable Development Goals.  相似文献   

4.
Ultrasound-assisted approach was successfully applied for the synthesis of mayenite from calcium and aluminum hydroxides and then subsequently impregnated with Ni by the wet impregnation method. The synthesis was performed with a 13 mm probe-type ultrasound, operating under an acoustic power of 30.5 W and a frequency of 20 kHz. Ultrasound application was studied in detail from a 3k experimental design, where the variables studied were ultrasound time (10–50 min) and calcination temperature (900–1200 °C). Ultrasound promoted an effective dispersion of the precursors in a short time of 10 min leading to a high conversion to mayenite after calcination at 1200 °C. Ultrasound treatment also had a positive effect on Ni impregnation, increasing the dispersion of the metal in the support and leading to a stronger interaction of nickel-containing species with mayenite support. The use of ultrasound application has proved to be attractive both for catalyst properties and for facilitating catalyst synthesis.  相似文献   

5.
This work presents the optimum conditions of dissolution of copper in copper converter slag in sulphuric acid ferric sulphate mixtures in the presence and absence of ultrasound. The Taguchi method was used to determine the optimum conditions. The parameters investigated were the reaction temperature, acid concentration, ferric sulphate concentration and reaction time. The optimum conditions for the maximum dissolution of copper were determined as follows: reaction temperature, 65 °C; acid concentration, 0.2 M; ferric sulphate concentration, 0.15 M; reaction time 180 min. Under these conditions, extraction efficiency of copper, zinc, cobalt, and iron from slag were 89.28%, 51.32%, 69.87%, and 13.73%, respectively, in the presence of ultrasound, while they are 80.41%, 48.28%, 64.52%, and 12.16%, respectively, in the absence of ultrasound. As seen from the above results, it is clear that ultrasound enhances on the dissolution of Cu, Zn, Co and Fe in the slag.  相似文献   

6.
Ultrasound-assisted approach has been investigated for delignification so as to develop green and sustainable technology. Combination of NaOH with ultrasound has been applied with detailed study into effect of various parameters such as time (operating range of 15–90 min), alkali concentration (0.25 M−2.5 M), solvent loading (1:15–1:30 w/v), temperature (50–90 ˚C), power (40–140 W) and duty cycle (40–70 %) at fixed frequency of 20 kHz. The optimized operating conditions established for the ultrasonic horn were 1 M as the NaOH concentration, 1 h as treatment time, 70˚C as the operating temperature, 1:20 as the biomass loading ratio, 100 W as the ultrasonic power and 70% duty cycle yielding 67.30% as the delignification extent. Comparative study performed using conventional and ultrasonic bath assisted alkaline treatment revealed lower delignification as 48.09% and 61.55% respectively. The biomass samples were characterized by SEM, XRD, FTIR and BET techniques to establish the role of ultrasound during the treatment. The morphological changes based on the ultrasound treatment demonstrated by SEM were favorable for enhanced delignification and also the crystallinity index was more in the case of ultrasound treated material than that obtained by conventional method. Specific surface area and pore size determinations based on BET analysis also confirmed beneficial role of ultrasound. The overall results clearly demonstrated the intensification obtained due to the use of ultrasonic reactors.  相似文献   

7.
Use of ultrasound as an intensified non-destructive decontamination technique for processing graphite limits its reusability beyond a few number of decontamination cycles due to the exfoliation of graphite due to cavitation effects. The current work establishes that the use of platinum nanoparticles in the leachant reduces the erosion of graphite substrate due to cavitation. It presents an improved way of sonochemical recovery of ceria using a mixture of nitric acid, formic acid and hydrazinium nitrate in the presence of platinum nanoparticles and ionic liquid. The platinum nanoparticles catalyst in ionic liquid prevented the generation of the carbon residue due to the combined effect of denitration and reduced sonication. The presence of the catalyst showed a fivefold increase in dissolution kinetics of ceria as well as absence of graphite erosion, facilitating better chances of graphite recycling than the decontamination without the catalyst. The catalytic approach offers a better recycle strategy for graphite with reduced exfoliation and NOx generation due to denitration, making it a more sustainable decontamination process. Since ceria is used as a surrogate for plutonium oxide, the results can be extended to decontaminate such deposits clearly establishing the utility of the presented results in the nuclear industry.  相似文献   

8.
Short, high-intensity ultrasound pulses have the ability to achieve localized, clearly demarcated erosion in soft tissue at a tissue-fluid interface. The primary mechanism for ultrasound tissue erosion is believed to be acoustic cavitation. To monitor the cavitating bubble cloud generated at a tissue-fluid interface, an optical attenuation method was used to record the intensity loss of transmitted light through bubbles. Optical attenuation was only detected when a bubble cloud was seen using high speed imaging. The light attenuation signals correlated well with a temporally changing acoustic backscatter which is an excellent indicator for tissue erosion. This correlation provides additional evidence that the cavitating bubble cloud is essential for ultrasound tissue erosion. The bubble cloud collapse cycle and bubble dissolution time were studied using the optical attenuation signals. The collapse cycle of the bubble cloud generated by a high intensity ultrasound pulse of 4-14 micros was approximately 40-300 micros depending on the acoustic parameters. The dissolution time of the residual bubbles was tens of ms long. This study of bubble dynamics may provide further insight into previous ultrasound tissue erosion results.  相似文献   

9.
Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction is a significant reaction for obtaining industrially important products. The current research work deals with intensification of reaction of 4-bromoanisole and phenylboronic acid catalyzed with 5 wt% Pd/C (5% by weight Pd supported on C available as commercial catalyst) using ultrasound and more importantly, without use of any additional phase transfer catalyst. Heterogeneous catalyst has been selected in the present work so as to harness the benefits of easy separation and the possible limitations of heterogeneous operation are minimized by introducing ultrasonic irradiations. The effect of operating parameters such as ultrasound power, temperature, catalyst loading and molar ratio on the progress of reaction has been investigated. It has been observed that an optimum power, temperature and catalyst loading exist for maximum benefits whereas higher molar ratio was found to be favourable for the progress of the reaction. Also, the use of ultrasound reduced the reaction time from 70 min required in conventional approach to only 35 min under conditions of frequency of 22 kHz, power dissipation of 40 W and catalyst loading as 1.5 mol% (refers to total quantum of catalyst used in the work) in ethanol-water system under ambient conditions. The work also demonstrated successful results at ten times higher volume as compared to the normally used volumes in the case of simple ultrasonic horn. Overall, the work has successfully demonstrated process intensification benefits obtained due to the use of ultrasound for heterogeneously catalyzed Suzuki-Miyaura cross-coupling reaction.  相似文献   

10.
Copper is one of the most toxic heavy metals having significant effects on the living organisms and hence effective removal of copper from waste water is crucial. The current work investigates the application of activated watermelon shell based biosorbent for the removal of copper from aqueous solution. The effect of activation using calcium hydroxide and citric acid as well as the effect of operating parameters like contact time, adsorbent dosage, temperature, pH, initial concentration and ultrasonic power on the extent of removal has been investigated. Experiments performed in the presence of ultrasound to investigate the degree of intensification as compared to the conventional agitation based treatment revealed that the adsorption rate significantly increases in the presence of ultrasound and also the time required for reaching the equilibrium reduces from 60 min in conventional approach to only 20 min in the presence of ultrasound. The extent of adsorption of Cu(II) on adsorbents was found to increase with an increase in the operating pH till an optimum value of 5. The extent of adsorption also increased with a decrease in the initial concentration and particle size as well as with an increase in ultrasonic power till an optimum. Kinetics and isotherm study revealed that all the experimental data was found to best fit the pseudo second order kinetics and Langmuir adsorption isotherm model respectively. Maximum adsorption capacity was found to be 31.25 mg/g for watermelon treated with calcium hydroxide and 27.027 mg/g for watermelon treated with citric acid. Overall present study established that activated watermelon is an environmentally friendly, low cost and highly efficient biosorbent that can be successfully applied for the removal of copper from aqueous solution with intensification benefits based on the ultrasound assisted approach.  相似文献   

11.
The high contact resistance of organic thin film transistors (OTFTs), due to the work function difference between metal electrode and organic channel, seriously decreases the electrical properties. Graphene electrode could reduce the contact resistance and improve the electrical performance of OTFTs. However, the high chemical vapor deposition (CVD) temperature (900–1000 °C) limits the available OTFT substrate in the case of direct graphene growth on S/D metal electrodes. Furthermore, the application of a transferred graphene electrode induces significant problems due to the transfer process. In this work, thin graphite sheet was directly grown on a metal electrode by the inductively coupled plasma-chemical vapor deposition (ICP-CVD) method at as low temperature as 400, 500 °C. We show that OFETs with thin graphite sheet/metal, grown at 400, 500 °C, exhibit much lower contact resistance than OFETs with metal-only electrode.  相似文献   

12.
The current work deals with the value addition of lactose by transforming into hydrolyzed lactose syrup containing glucose and galactose in major proportion using the novel approach of ultrasound assisted acid catalyzed lactose hydrolysis. The hydrolysis of lactose was performed in ultrasonic bath (33 kHz) at 50% duty cycle at different temperatures as 65 °C and 70 °C and two different hydrochloric acid (HCl) concentrations as 2.5 N and 3 N. It was observed that acid concentration, temperature and ultrasonic treatment were the major factors in deciding the time required to achieve ∼90% hydrolysis. The ultrasonic assisted approach resulted in reduction in the reaction time and the extent of intensification was established to be dependent on the temperature, acid concentration and time of ultrasonic exposure. It was observed that the maximum process intensification obtained by introduction of ultrasound in the lactose hydrolysis process performed at 70 °C and 3 N HCl was reduction in the required time for ∼90% hydrolysis from 4 h (without the presence of ultrasound) to 3 h. The scale-up study was also performed using an ultrasonic bath with longitudinal horn (36 kHz as operating frequency) at 50% duty cycle, optimized temperature of 70 °C and acid concentration of 3 N. It was observed that the reaction was faster in the presence of ultrasound and stirring by axial impeller at rpm of 225 ± 25. The time required to complete ∼90% of hydrolysis remained almost the same as observed for small scale study on ultrasonic bath (33 kHz) at 50% duty cycle. The use of recovered lactose from whey samples instead of pure lactose did not result in any significant changes in the progress of hydrolysis, confirming the efficacy of the selected approach. Overall, the work has presented a novel ultrasound assisted approach for intensified lactose hydrolysis.  相似文献   

13.
In this work, extraction of flavonoids from peanut shells has been studied in the presence of ultrasound and the results are compared with Soxhlet and heat reflux extraction for establishing the process intensification benefits. The process optimization for understanding the effects of operating parameters, such as ethanol concentration, particle size, solvent to solid ratio, extraction temperature, ultrasonic power and ultrasonic frequency, on the extraction of flavonoids has been investigated in details. The highest extraction yield (9.263 mg/g) of flavonoids was achieved in 80 min at optimum operating parameters of particle size of 0.285 mm, solvent to solid ratio of 40 ml/g, extraction temperature of 55 °C, ultrasonic power of 120 W and ultrasonic frequency of 45 kHz with 70% ethanol as the solvent. Two kinetic models (i.e. phenomenological model and Peleg’s model) have been introduced to describe the extraction kinetic of flavonoids by fitting experimental data and predict kinetic parameters. Good performance with slight loss of goodness of fit of two models was found by comparing their coefficient of determination (R2), root mean square error (RMSE) and/or mean percentage error (MPE) values. This work would provide the reduction of degradation and the economic evaluation for the extraction processes of flavonoids from peanut shells, as well as give a better explanation for the mechanism of ultrasound.  相似文献   

14.
The influence of low-frequency ultrasound (40 kHz) in the esterification reaction between acetic acid and butanol for flavor ester synthesis catalyzed by the commercial immobilized lipase B from Candida antarctica (Novozym 435) was evaluated. A central composite design and the response surface methodology were used to analyze the effects of the reaction parameters (temperature, substrate molar ratio, enzyme content and added water) and their response (yields of conversion in 2.5 h of reaction). The reaction was carried out using n-hexane as solvent. The optimal conditions for ultrasound-assisted butyl acetate synthesis were found to be: temperature of 46 °C; substrate molar ratio of 3.6:1 butanol:acetic acid; enzyme content of 7%; added water of 0.25%, conditions that are slightly different from those found using mechanical mixing. Over 94% of conversion was obtained in 2.5 h under these conditions. The optimal acid concentration for the reaction was determined to be 2.0 M, compared to 0.3 M without ultrasound treatment. Enzyme productivity was significantly improved to around 7.5-fold for each batch when comparing ultrasound and standard mechanical agitation. The biocatalyst could be directly reused for 14 reactions cycles keeping around 70% of its original activity, while activity was virtually zeroed in the third cycle using the standard mixing system. Thus, compared to the traditional mechanical agitation, ultrasound technology not only improves the process productivity, but also enhances enzyme recycling and stability in the presence of acetic acid, being a powerful tool to improve biocatalyst performance in this type of reaction.  相似文献   

15.
In this work, three design configurations of a sonoreactor are considered under various operating conditions, and the acoustic characteristics during water sonication are investigated while using an immersed-type ultrasonic flat transducer probe in a sonoreactor model. Numerical models are also developed to simulate the sonication process, and they are successfully validated and compared with available data in the literature. Several sets of numerical investigations are conducted using the finite-element method and solved by the computational acoustics module in the COMSOL Multiphysics. The effects of the acoustical and geometrical parameters are investigated, analyzed, and reported, including the ultrasonic frequency, acoustic intensity, and scaling-up the reactor. The present study includes a parametric investigation examining the change of the ultrasonic frequency, intensity, and probe immersion depth on the performance. The results of the parametric study show that the highest cavitation energy corresponds to the maximum magnitude of negative pressure that takes place in the range of 60–80 kHz. The cavitation energy analyses are conducted under the conditions of 20 kHz of frequency and at 36 W input power. It is found that the cavitation energy of 15.87 W could produce 2.98 × 10−10 mol/J of sonochemical efficiency. In addition, the effect of altering the transducer probe depth changes the acoustic pressure field insignificantly. Furthermore, a recommendation is made to improve the sonochemical efficiency by introducing more considerable ultrasound input power while operating the sonoreactor at an ultrasonic frequency lower than 60 kHz. The results presented in this paper provide a comprehensive assessment of different sonoreactors and the feasibility of scaling-up their production rate.  相似文献   

16.
This study aimed to investigate the effect of ultrasonic power and temperature on the impurity removal rate during conventional and ultrasonic-assisted leaching of aphanitic graphite. The results showed that the ash removal rate increased gradually (∼50 %) with the increase in ultrasonic power and temperature but deteriorated at high power and temperature. The unreacted shrinkage core model was found to fit the experimental results better than other models. The Arrhenius equation was used to calculate the finger front factor and activation energy under different ultrasonic power conditions. The ultrasonic leaching process was significantly influenced by temperature, and the enhancement of the leaching reaction rate constant by ultrasound was mainly reflected in the increase of the pre-exponential factor A. Ultrasound treatment improved the efficiency of impurity mineral removal by destroying the inert layer formed on the graphite surface, promoting particle fragmentation, and generating oxidation radicals. The poor reactivity of hydrochloric acid with quartz and some silicate minerals is a bottleneck limiting the further improvement of impurity removal efficiency in ultrasound-assisted aphanitic graphite. Finally, the study suggests that introducing fluoride salts may be a promising method for deep impurity removal in the ultrasound-assisted hydrochloric acid leaching process of aphanitic graphite.  相似文献   

17.
The influence of the sample morphology and experimental conditions towards the sonochemical dissolution of nanoscale ThO2 samples in sulfuric acid media is described. Significant sonochemical dissolution rates and yields are observed at 20 kHz under Ar/O2 atmosphere in dilute 0.5 M H2SO4 at room temperature, contrasting with the generally-reported high refractory behavior for ThO2. The dissolution of ThO2 combines the physical effects driven by acoustic cavitation phenomenon, the complexing affinity of Th(IV) in sulfuric medium and the sonochemical generation of H2O2. These sonochemical conditions further allow the observation of the partial conversion of ThO2 into a scarce Th(IV) peroxo sulfate with 1D morphology resulting from one or both following processes: dissolution/reprecipitation or formation of an intermediate Th(IV) surface complex.  相似文献   

18.
This study aims principally to assess numerically the impact of methanol mass transport (i.e., evaporation/condensation across the acoustic bubble wall) on the thermodynamics and chemical effects (methanol conversion, hydrogen and oxygenated reactive species production) of acoustic cavitation in sono-irradiated aqueous solution. This effect was revealed at various ultrasound frequencies (from 213 to 1000 kHz) and acoustic intensities (1 and 2 W/cm2) over a range of methanol concentrations (from 0 to 100%, v/v). It was found that the impact of methanol concentration on the expansion and compression ratios, bubble temperature, CH3OH conversion and the molar productions inside the bubble is frequency dependent (either with or without consideration of methanol mass transport), where this effect is more pronounced when the ultrasound frequency is decreased. Alternatively, the decrease in acoustic intensity decreases clearly the effect of methanol mass transport on the bubble sono-activity. When methanol mass transfer is eliminated, the decrease of the bubble temperature, CH3OH conversion and the molar yield of the bubble with the rise of methanol concentration was found to be more amortized as the wave frequency is reduced from 1 MHz to 213 kHz, compared to the case when the mass transport of methanol is taken into account. Our findings indicate clearly the importance of incorporating the evaporation and condensation mechanisms of methanol throughout the numerical simulations of a single bubble dynamics and chemical activity.  相似文献   

19.
Acoustic noise spectra were studied for the first time in overheated water using sonohydrothermal reactor operating at 20 kHz ultrasound in the temperature range from 25 to 200 °C at the autogenic pressure of 1–14 bar. The obtained results highlighted a dominating role of stable cavitation during ultrasonic treatment of hot water. Heating of sonicated water results in the formation of large number of nonlinearly oscillating bubbles synchronous with the driving frequency. At 200 °C, the acoustic spectra also display strong subharmonic and multiple ultraharmonic bands. Moreover, cavitation bubbles formed at 200 °C exhibit chaotic and random motions. It has been shown that the addition of TiO2 nanoparticles to hydrothermal water heated at 200 °C allows to eliminate subharmonic/ultraharmonic bands and stochastic oscillations as well. This effect was assigned to Pickering-like bubble stabilization due to the particle accumulation at the bubble surface.  相似文献   

20.
Coalescence of water droplets in crude oil has been effectively promoted by chemical demulsifiers integrated with ultrasound. Temporary images of water droplets in W/O emulsions were directly monitored using a metallurgical microscope. Water droplets achieved expansion of 118% at 40 min ultrasonic irradiation time under well mixing conditions. However, water droplets in heavy crude oil undergo less aggregation than those in light crude oil, due to resistance of mobility in highly viscous fluid. In the absence of chemical demulsifiers, water droplets enveloped by native surfactants appeared to aggregate arduously because of occurrence of interfacial tension gradients. Influential significance analyses have been executed by a factorial design method on operation variables, including acoustic power intensity, operation temperature, ultrasonic irradiation time and chemical demulsifier dosages. In this work, the outcomes indicate that the optimal operating conditions for desalination of crude oil assisted by ultrasound were as follows: acoustic power intensity = 300 W, operation temperature = 90℃, ultrasonic irradiation time = 75 min and chemical demulsifier dosages = 54 mg/L. Besides, it was found that the most influential importance of operation parameter was temperature, followed with acoustic power intensity, ultrasonic irradiation time and chemical demulsifier dosages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号