首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Electrospinning nanofibers (NFs) made from natural proteins have drawn increasing attention recently. Rapeseed meal is a by-product that rich in protein but not fully utilized due to poor properties. Therefore, modification of rapeseed protein isolates (RPI) is necessary to expand applications. In this study, pH shift alone or ultrasonic-assisted pH shift treatment was adopted, the solubility of RPI, along with the conductivity and viscosity of the electrospinning solution were detected. Moreover, the microstructure and functional characteristics of the electrospinning NFs, as well as the antibacterial activity of clove essential oil loaded-NFs were investigated. The tested parameters were remarkably improved after different treatments compared with the control, and synergistic effects were observed, especially under alkaline conditions. Hence, pH12.5 + US showed the maximum value of solubility, conductivity, and viscosity, which was more than 7-fold, 3-fold, and almost 1-fold higher than the control respectively. Additionally, SEM and AFM images showed a finer and smoother surface of NFs after treatments, and the finest diameter of 216.7 nm was obtained after pH12.5 + US treatment in comparison with 450.0 nm in control. FTIR spectroscopy of NFs demonstrated spatial structure changes of RPI, and improved thermal stability and mechanical strength of NFs were achieved after different treatments. Furthermore, an inhibition zone with a diameter of 22.8 mm was observed from the composite NFs. This study indicated the effectiveness of ultrasonic-assisted pH shift treatment on the physicochemical properties improvement and functional enhancement of NFs made from RPI, as well as the potential antibacterial application of the composite NFs in the future.  相似文献   

2.
The in vitro protein digestibility (IVPD) of napin was studied using different pretreatment methods, including ultrasound, mixing napin with lactalbumin, and ultrasound-assisted protein mixing. The relationships between IVPD, molecular structure, and disulfide bonds were explored, showing that the IVPD of napin was the highest compared with the control when treated with 40% ultrasound power. When the proportion of napin to lactalbumin was 5:5, a synergistic influence between the two proteins was observed. Further investigation showed that the IVPD of napin was clearly improved by treatment with ultrasound-assisted protein mixing. Compared with the single protein in the control, the β-sheet content in the secondary structure of the mixed protein after sonication was reduced from 45.02% to 37.16%. The ordered protein structure was also disrupted by ultrasound, as supported by fluorescence intensity and surface hydrophobicity analyses. The decreased number of disulfide bonds and conformational changes indicated that the IVPD of rapeseed napin was closely related to the disulfide bond content. This study provides a theoretical basis for improving protein digestibility by combining ultrasound with physical mixing.  相似文献   

3.
Rapeseed protein isolate (RPI) and dextran conjugates were prepared by traditional and ultrasonic assisted wet-heating. The effects on the grafting degree (GD), structure, functionality, and digestibility of conjugates were studied. Ultrasonic frequency, temperature, and time all significantly affected the GD. Under the optimum conditions (temperature of 90 °C and time of 60 min), compared to traditional wet-heating, ultrasonic treatment at 28 kHz significantly increased the GD by 2.12 times. Compared to RPI, surface hydrophobicities of conjugates were significantly decreased by graft and ultrasonic treatments. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and amino acid composition results confirmed that traditional graft reaction involved cysteine (Cys) and lysine (Lys) whereas the ultrasonic assisted one involved only Cys. Both were from the 12S globulin subunit and cruciferin. Fourier transform infrared spectrum (FT-IR) and circular dichroism (CD) results showed that graft treatment significantly changed secondary structure and ultrasonic treatment had the greatest impact on the decrease in the β-sheet (19.1%) and the increase in the random coil (49.6%). Graft and ultrasonic treatments both made surface structure looser and more porous. The two treatments also caused molecular weight to become bigger, and ultrasonic treatment had the greatest effect on the increase (68.2%) in 110–20.5 kDa. Structural modifications of RPI by grafting to dextran caused improvements of solubility (at pH 5–6), emulsifying activity (at pH 4–10), emulsion stability (at pH 4–5 and 9–10), and thermal stability (at temperature 90–100 °C). The digestibility of conjugates was decreased by graft and ultrasonic treatments and the conjugates were mainly digested in the intestinal phase. The ultrasonic assisted wet-heating was an efficient and safe method for producing RPI-dextran conjugates and improving the utilization value of rapeseed meal.  相似文献   

4.
In order to expand the applications of plant protein in food formulations, enhancement of its functionalities is meaningful. Herein, the effects of ultrasonic (20 KHz, 400 W, 20 min)-assisted pH shift (pH 10 and 12) treatment on the structure, interfacial behaviors, as well as the emulsifying and foaming properties of perilla protein isolate (PPI) were investigated. Results showed that the solubility of PPI treated by ultrasonic-assisted pH shift (named UPPI-10/12) exceeded 90 %, which was at least 2 and 1.4 times that of untreated PPI and ultrasound-based PPI. Meanwhile, UPPI-10/12 possessed higher foamability (increasing by at least 1.2 times) and good emulsifying stability. Ultrasonic-assisted pH shift treatment decomposed large PPI aggregates into tiny particles, evident from the dynamic light scattering (DLS) and atomic force microscopy results. Besides, this approach induced a decrease in α-helix of PPI and an increase in β-sheet, which might result in the exposure of the hydrophobic group on the structural surface of PPI, thus leading to the increase of surface hydrophobicity. The smaller size and higher hydrophobicity endowed UPPI-10/12 faster adsorption rate, tighter interfacial structure, and higher elastic modulus at the air- and oil–water interfaces, evident from the cryo-SEM and interfacial dilatational rheological results. Thus, the emulsifying and foaming properties could evidently enhance. This study demonstrated that ultrasonic-assisted pH shift technique was a simple approach to effectively improve the functional performance of PPI.  相似文献   

5.
Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.  相似文献   

6.
Qingke protein rich in restricted amino acids such as lysine, while the uncoordination of ratio of glutenin and gliadin in Qingke protein has a negative impact on its processing properties. In this study, the effect of multiple-frequency ultrasound combined with transglutaminase treatment on the functional and structural properties of Qingke protein and its application in noodle manufacture were investigated. The results showed that compared with the control, ultrasound-assisted transglutaminase dual modification significantly increased the water and oil holding capacity, apparent viscosity, foaming ability, and emulsifying activity index of Qingke protein, which exhibited a higher storage modulus G' (P < 0.05). Meanwhile, ultrasound combined with transglutaminase treatment enhanced the cross-linking degree of Qingke protein (P < 0.05), as shown by decreased free amino group and free sulfhydryl group contents, and increased disulfide bond content. Moreover, after the ultrasound-assisted transglutaminase dual modification treatment, the fluorescence intensity, the contents of α-helix and random coil in the secondary structure of Qingke protein significantly decreased, while the β-sheet content increased (P < 0.05) compared with control. SDS-PAGE results showed that the bands of Qingke protein treated by ultrasound combined with transglutaminase became unclear. Furthermore, the quality of Qingke noodles made with Qingke powder (140 g/kg dual modified Qingke protein mixed with 860 g/kg extracted Qingke starch) and wheat gluten 60–70 g/kg was similar to that of wheat noodles. In summary, multiple-frequency ultrasound combined with transglutaminase dual modification can significantly improve the physicochemical properties of Qingke protein and the modified Qingke proteins can be used as novel ingredients for Qingke noodles.  相似文献   

7.
The combination of protein and flavonoids can ameliorate the problems of poor solubility and stability of flavonoids in utilization. In this study, soybean protein isolate pretreated by ultrasonication was selected as the embedding wall material, which was combined with luteolin to form a soybean protein isolate-luteolin nanodelivery system. The complexation effect and structural changes of soybean protein isolate (SPI) and ultrasonic pretreatment (100 W, 200 W, 300 W, 400 W and 500 W) of soybean protein isolate with luteolin (LUT) were compared, as well as the changes in digestion characteristics and antioxidant activity in vitro. The results showed that proper ultrasonic pretreatment increased the encapsulation efficacy, loading amount and solubility to 89.72%, 2.51 μg/mg and 90.56%. Appropriate ultrasonic pretreatment could make the particle size and the absolute value of ζ-potential of SPI-LUT nanodelivery system decrease and increase respectively. The FTIR and fluorescence results show that appropriate ultrasonic pretreatment could reduce α-helix, β-sheet and random coil, increase β-turn, and enhance fluorescence quenching. The thermodynamic evaluation results indicate that the ΔG < 0, ΔH > 0 and ΔS > 0, so the interaction of LUT with the protein was spontaneous and mostly governed by hydrophobic interactions. The XRD results show that the LUT was amorphous and completely wrapped by SPI. The DSC results showed that ultrasonic pretreatment could improve the thermal stability of SPI-LUT nanodelivery system to 112.66 ± 1.69 °C. Digestion and antioxidant analysis showed that appropriate ultrasonic pretreatment increased the LUT release rate and DPPH clearance rate of SPI-LUT nanodelivery system to 89.40 % and 55.63 % respectively. This study is a preliminary source for the construction of an SPI nanodelivery system with ultrasound pretreatment and the deep processing and utilization of fat-soluble active substances.  相似文献   

8.
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.  相似文献   

9.
In this study, the effects of ultrasound treatment on the texture, physicochemical properties and protein structure of composite gels prepared by salted egg white (SEW) and cooked soybean protein isolate (CSPI) at different ratios were investigated. With the increased SEW addition, the ζ-potential absolute values, soluble protein content, surface hydrophobicity and swelling ratio of composite gels showed overall declining trends (P < 0.05), while the free sulfhydryl (SH) contents and hardness of exhibited overall increasing trends (P < 0.05). Microstructural results revealed that composite gels exhibited denser structure with the increased SEW addition. After ultrasound treatment, the particle size of composite protein solutions significantly decreased (P < 0.05), and the free SH contents of ultrasound-treated composite gels were lower than that of untreated composite gels. Moreover, ultrasound treatment enhanced the hardness of composite gels, and promoted the conversion of free water into non-flowable water. However, when ultrasonic power exceeded 150 W, the hardness of composite gels could not be further enhanced. FTIR results indicated that ultrasound treatment facilitated the composite protein aggregates to form a more stable gel structure. The improvement of ultrasound treatment on the properties of composite gels was mainly by promoting the dissociation of protein aggregates, and the dissociated protein particles further interacted to form denser aggregates through disulfide bond, thus facilitating the crosslinking and reaggregation of protein aggregates to form denser gel structure. Overall, ultrasound treatment is an effective approach to improve the properties of SEW-CSPI composite gels, which can improve the potential utilization of SEW and SPI in food processing.  相似文献   

10.
Kiwi starch (KS) is a fruit-derived starch; in order to improve its processing performance and increase its added value, it is necessary to modify KS to enhance the positive attributes and to enlarge its application. In this study, KS was modified by high-power ultrasound treatment (HUT) to reveal the relationship between the structure and function of KS with different treatment powers (0, 200, 400, and 600 W) and different treatment times (0, 10, 20, and 30 min). The results showed that HUT destroyed the granular morphology of KS, formed holes and cracks on the surface, and reduced the particle size and the short-range molecular order of KS. After different HUTs, the apparent amylose content (AAC), swelling power (SP), water solubility index (WSI), viscosity and setback value (SB) of KS were significantly increased, while the gelatinization temperature was significantly decreased. In addition, HUT significantly reduced the content of rapidly digestible starch (RDS) and slowly digestible starch (SDS), while it significantly enhanced the content of resistant starch (RS) (64.08–72.73%). In a word, HUT as a novel physical modification method for KS, enlarged its application, and fulfilled different demands of a starch-based product, which introduces another possibility for kiwi fruit further processing.  相似文献   

11.
The effects of ultrasound combined (25 kHz, 400 ± 20 W/L, ultrasonic time of 5, 10 and 15 min) with soy protein isolate processing on gelling properties of low-salt silver carp surimi, aggregation and conformation of myofibrillar protein were investigated. The results revealed that, compared with only adding soy protein isolate components, ultrasound-assisted soy protein isolate had a more obvious effect on the protein structure in low-salt surimi, leading to the decrease in α-helix and total sulfhydryl contents, and the increase in β-sheet content and protein solubility. As a result, more proteins participated in the formation of the gel network, and significant improvements in hardness, gel strength and water-holding capacity of the low-salt surimi gel were observed, while the myosin heavy chain in SDS-PAGE was weakened. The low-field NMR results showed that the initial relaxation time of T2 was apparently shorter, the free water content decreased and the bound water content increased under the action of ultrasound. Scanning electron microscope observation found that the surimi gel treated by ultrasound exhibited smaller holes, and had a more stable and denser network structure. In conclusion, the results of our work demonstrated that ultrasound combined with soy protein isolate can significantly improve the gel quality properties of low-salt silver carp.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号