首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the effects of high-power ultrasound (HPU, 0–45 °C, 242–968 W/cm2, 2–16 min) on the rheological properties of strawberry pulp. Following the HPU treatment, the strawberry pulp exhibited an increase in apparent viscosity, storage modulus (G′), and loss modulus (G″). The water-soluble pectin (WSP), pectin methylesterase (PME) activity, and free calcium ions (Ca2+) of the strawberry pulp after HPU treatment were investigated to determine a possible reason for this phenomenon. HPU caused a significant decrease in the degree of esterification (DE), molecular weight (Mw), and particle size of strawberry WSP, but no significant changes were evident in the galacturonic acid (GalA) content and the zeta (ζ)-potential (P > 0.05), resulting in decrease in the apparent viscosity. Moreover, the largest reduction of PME activity was 22.6% after HPU treatment at 605 W/cm2 and 45 °C for 16 min, indicating that the PME was resistant to the HPU treatments. The free Ca2+ content in the strawberry pulp was significantly decreased after exposure to HPU (P < 0.05). The maximal reduction of 52.01% in the free Ca2+ was achieved at 605 W/cm2 and 45 °C for 16 min. The overall results indicated that the high residual activity (RA) of PME after HPU might induce the low esterification of WSP, while HPU promoted the interaction of free Ca2+ and low-methylated pectin, to form the network structure of Ca2+-low-methylated pectin, resulting in an increase in viscosity in the complex strawberry system.  相似文献   

2.
The influence of multi-frequency combined ultrasound thawing on primary, secondary, and tertiary structures, electrophoresis pattern, particle size distribution, zeta potential values, thermal stability, rheological behavior, and microstructure of small yellow croaker myofibrillar proteins (MPs) were studied. Four treatments were used for thawing small yellow croakers: flow water thawing (FWT), mono-frequency ultrasonic thawing (MUT), dual-frequency ultrasonic thawing (DUT), and tri-frequency ultrasonic thawing (TUT). Compared with fresh samples (FS), the MPs of the sample pretreated by DUT had non-significant effect on protein primary (including free amino groups and surface hydrophobicity), secondary, tertiary structures, electrophoresis pattern, and microstructure. MPs pretreated by DUT had less aggregation and degradation. Besides, DUT treatment increased the thermal stability of MPs. The ultrasound had significant effects on the rheological properties of MPs. Overall, DUT effectively minimized the changes in MPs structure and protected the protein thermal stability and rheological behavior during the thawing process.  相似文献   

3.
In this study, the effect of high power ultrasound (US) probe in varying intensities and times (18.4, 29.58, and 73.95 W/cm2 for 5, 12.5 and 20 min respectively) on functional properties of millet protein concentrate (MPC) was investigated, and also the structural properties of best modified treatment were evaluated by FTIR, DSC, Zeta potential and SDS-PAGE techniques. The results showed the solubility in all US treated MPC was significantly (p < .05) higher than those of the native MPC. Foaming capacity of native MPC (271.03 ± 4.51 ml) was reduced after US treatments at low intensities (82.37 ± 5.51 ml), but increased upon US treatments at high intensities (749.7 ± 2 ml). In addition, EAI and ES increased after US treatments. One of the best US treatments that can improve the functional properties of MPC was 73.95 W/cm2 for 12.5 min that resulted in reduction of molecular weight and increase nearly 36% in the negative surface charge that was confirmed by SDS-page and Zeta potential results, respectively.  相似文献   

4.
A solution (10%, w/v) of whey protein soluble aggregates (WPISA) was pretreated with high-intensity ultrasound (HUS, 20 kHz) for different durations (10–40 min) before incubation with transglutaminase (TGase) to investigate the effect of HUS on the structural, physicochemical, rheological, and gelation properties of TGase cross-linked WPISA. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that HUS increased the amounts of high-molecular-weight polymers/aggregates in WPISA after incubation with TGase. HUS significantly increased (P < 0.05) the degree of TGase-mediated cross-linking in WPISA, as demonstrated by a reduction in free amino group contents. HUS significantly increased (P < 0.05) the particle size, intrinsic fluorescence intensity, and surface hydrophobicity of TGase cross-linked WPISA, but had no significant impact (P > 0.05) on the zeta-potential or total free sulfhydryl group content of TGase cross-linked WPISA. The apparent viscosity and the consistency index of TGase cross-linked WPISA were significantly increased by HUS (P < 0.05), which indicated that HUS facilitated the formation of more high-molecular-weight polymers. HUS significantly increased (P < 0.05) the water holding capacity and gel strength of glucono-δ-lactone (GDL)-induced TGase cross-linked WPISA gels. The results indicated that HUS could be an efficient tool for modifying WPISA to improve its degree of TGase-mediated cross-linking, which would lead to improved rheological and gelation properties.  相似文献   

5.
Myosin from silver carp was sonicated with varying power output (100, 150, 200 and 250 W) for 3, 6, 9, and 12 min. The changes in the structure and physicochemical properties of myosin were evaluated by dynamic light scattering, SDS-PAGE and some physicochemical indexes. The ultrasound treatments induced a significant conversion of myosin aggregates to smaller ones with a more uniform distribution, and obvious enhancement in solubility. The structure of myosin was also notably changed by sonication, with a decrease in Ca2+-ATPase activity and SH content, and an increase in surface hydrophobicity. Furthermore, SH groups were oxidized, leading to a decrease in reactive SH and total SH contents. SDS-PAGE analysis revealed that ultrasound could induce the degradation of myosin heavy chain and change the protein fraction of myosin. Collectively, the ultrasonic treatment of 100 W for 3 min showed slight influence on the SH content, S0-ANS, and electrophoretic patterns, and the extent of changes in myosin structure and physicochemical properties tended to increase with ultrasonic power and time. The integrated data indicate that ultrasonic treatment can facilitate the improvement of the solubility and dispersion of myosin, but the choice of a suitable ultrasonic condition to avoid oxidation and degradation of myosin is very important.  相似文献   

6.
The effects of ultrasound pretreatment with different frequencies and working modes, including mono-frequency ultrasound (MFU), dual-frequency ultrasound (DFU) and tri-frequency ultrasound (TFU), on the degree of hydrolysis (DH) of rice protein (RP) and angiotensin-I-converting enzyme (ACE) inhibitory activity of RP hydrolysate were investigated. Ultraviolet–visible (UV) spectroscopy, fourier transform infrared (FTIR) spectroscopy, surface hydrophobicity and scanning electron microscopy (SEM) of RP pretreated with ultrasound were measured. The results showed that ultrasound pretreatment did not increase DH of RP significantly (p > 0.05). However, all the ultrasound pretreatment increased the ACE inhibitory activity of RP hydrolysate significantly (p < 0.05). The MFU of 20 kHz showed higher ACE inhibitory activity compared to that of other MFU. The ACE inhibitory activity of sequential DFU was higher than that of simultaneous with the same frequency combination. Sequential TFU of 20/35/50 kHz produced the highest increase in ACE inhibitory activity in contrast with other ultrasound frequencies and working modes. All the results under ultrasound pretreatment showed that ultrasound frequencies and working modes were of great effect on the ACE inhibitory activity of RP. The changes in UV–Vis spectra and surface hydrophobicity indicated the unfolding of protein and exposure of hydrophobic groups by ultrasound. The FTIR analysis showed that all the ultrasound pretreatment with different frequencies and working modes decreased α-helix, β-turn content and increased β-sheet, random coil content of RP. The SEM results indicated that ultrasound pretreatment resulted in the deformation of RP. In conclusion, the frequency selection of ultrasound pretreatment of RP is essential for the preparation of ACE inhibitory peptide.  相似文献   

7.
This study aimed to evaluate the potential of time-dependent (0, 15, 30, 60, 120 min) treatment of porcine-derived myofibrillar proteins (MPs) with high-intensity ultrasound (HIU) for utilizing them as a Pickering stabilizer and decipher the underlying mechanism by which HIU treatment increases the emulsification and dispersion stability of MPs. To accomplish this, we analyzed the structural, physicochemical, and rheological properties of the HIU-treated MPs. Myosin heavy chain and actin were observed to be denatured, and the particle size of MPs decreased from 3,342.7 nm for the control group to 153.9 nm for 120 min HIU-treated MPs. Fourier-transformed infrared spectroscopy and circular dichroism spectroscopy confirmed that as the HIU treatment time increased, α-helical content increased, and β-sheet decreased, indicating that the protein secondary/tertiary structure was modified. In addition, the turbidity, apparent viscosity, and viscoelastic properties of the HIU-treated MP solution were decreased compared to the control, while the surface hydrophobicity was significantly increased. Analyses of the emulsification properties of the Pickering emulsions prepared using time-dependent HIU-treated MPs revealed that the emulsion activity index and emulsion stability index of HIU-treated MP were improved. Confocal laser scanning microscopy images indicated that small spherical droplets adsorbed with MPs were formed by HIU treatment and that dispersion stabilities were improved because the Turbiscan stability index of the HIU-treated group was lower than that of the control group. These findings could be used as supporting data for the utilizing porcine-derived MPs, which have been treated with HIU for appropriate time periods, as Pickering stabilizers.  相似文献   

8.
In the present study, ultrasound (400 W, U), microwave heating (75 ℃ for 15 min, M) and ultrasound synergized with microwave heating (UM) pretreatments of whey protein isolate (WPI) were applied to investigate and compare their influence on structure, physicochemical and functional characteristic of transglutaminase (TGase)-induced WPI. From the results of size exclusion chromatography, it could be seen that all three physical pretreatments could promote the formation of polymers in TGase cross-linked WPI, whose polymer amounts were increased by the order of U, UM and M pretreatment. Among three physical methods, M pretreatment had the strongest effect on structure and functional characteristics of TGase-induced WPI. Furthermore, compared with TGase-induced WPI, α-helix and β-turn of M−treated TGase-induced WPI (M−WPI−TGase) were reduced by 7.86% and 2.93%, whereas its β-sheet and irregular curl were increased by 15.37% and 7.23%. Zeta potential, emulsion stability and foaming stability of M−WPI−TGase were increased by 7.8%, 59.27% and 28.95%, respectively. This experiment exhibited that M was a more effective pretreatment method than U, UM for WPI, which could promote its reaction with TGase and improve its functional properties.  相似文献   

9.
The effects of pulsed ultrasound (PUS) (power: 240 w) with varying time (0, 3, 6, 9, 12 and 15 min) on rheological and structural properties of chicken myofibrillar protein (CMP) were examined. PUS treatment significantly caused a decrease in the viscosity coefficients (k) but an increase in the flow index (n) value of CMP solutions within short time (0–6 min), while had no significant effect for longer time (9–15 min). Besides, at 6 min, the solubility and microstructure of CMP samples were optimum. The primary structure of CMP was not altered by PUS treatment. However, Raman spectroscopy revealed a decrease in the α-helix and β-sheets proportion and an increase in the β-turn of CMP following PUS treatment. Random coil reached a maximum at 6 min. The changes in tertiary and quaternary structure of CMP by PUS treatment also occurred. As PUS time extended, S0-ANS for CMP increased measured by ANS fluorescence probe method. However, the normalized intensity of 760 cm−1 increased from 0 min to 6 min, and then decreased to 15 min by Raman test. Moreover, the reactive sulphur (SH) contents and disulfide bonds (S-S) of samples increased while the total SH contents decreased within 0–6 min. At 9 min and above, the contents of reactive SH groups were almost equal to the contents of total SH groups. Differential scanning calorimetry (DSC) of CMP showed that peak temperature (Td2) for myosin and peak temperature (Td3) for actin were both reduced in the first 6 min, while Td3 was not observed from 9 min following PUS treatment. Therefore, 6 min was the optimum PUS time to obtain better CMP rheological and structural properties.  相似文献   

10.
The study evaluated the effect of an ultrasound-assisted treatment on the structural and functional properties of sheep bone collagen (SBC). The type and distribution of SBC were analyzed by proteome (shotgun) technology combined with liquid chromatography-tandem mass spectrometry. Compared with pepsin extraction, the ultrasound-assisted treatment significantly increased the collagen extraction rate by 17.4 pp (P < 0.05). The characteristic functional groups and structural integrity of collagen extracted by both methods were determined via Fourier transform infrared spectroscopy, ultraviolet absorption spectroscopy, and fluorescence spectroscopy. Circular dichroism spectra revealed that the ultrasound-assisted pretreatment reduced α-helix content by 1.6 pp, β-sheet content by 21.9 pp, and random coils content by 28.4 pp, whereas it increased β-turn content by 51.9 pp (P < 0.05), compared with pepsin extraction. Moreover, ultrasound-assisted treatment collagen had superior functional properties (e.g., solubility, water absorption, and oil absorption capacity) and foaming and emulsion properties, compared with pepsin extraction. Furthermore, the relative content of type I collagen in ultrasound-assisted extracted SBC was highest at 79.66%; only small proportions of type II, VI, X, and XI collagen were present. Peptide activity analysis showed that SBC had potential antioxidant activity, dipeptidyl peptidase 4 inhibitory activity, and angiotensin-converting enzyme inhibitory activity; it also had anticancer, antihypertensive, anti-inflammatory, and immunomodulatory effects.  相似文献   

11.
The present study investigated effect of different amplitude levels (40, 70 and 100%), sonication temperatures (40, 50 and 60 °C) and exposure times (3, 7 and 11 min) on steady shear properties; apparent viscosity (η), shear stress (σ), consistency coefficient (K), flow behavior index (n) and dynamic shear properties; storage modulus (G′), loss modulus (G″), complex viscosity (η), complex modulus (G) and loss tangent (tan δ) values of glucomannan based salep solution (SS) and salep drink (SD) samples. In addition, the steady and dynamic shear properties were optimized using ridge analysis in terms of amplitude level, sonication temperature and exposure times levels. Increasing amplitude level and sonication time decreased considerably the η, σ, K, G′, G″ and η values of salep dispersions (SS and SD samples). However, sonication temperature did not have a remarkable effect on these properties.  相似文献   

12.
Kiwi starch (KS) is a fruit-derived starch; in order to improve its processing performance and increase its added value, it is necessary to modify KS to enhance the positive attributes and to enlarge its application. In this study, KS was modified by high-power ultrasound treatment (HUT) to reveal the relationship between the structure and function of KS with different treatment powers (0, 200, 400, and 600 W) and different treatment times (0, 10, 20, and 30 min). The results showed that HUT destroyed the granular morphology of KS, formed holes and cracks on the surface, and reduced the particle size and the short-range molecular order of KS. After different HUTs, the apparent amylose content (AAC), swelling power (SP), water solubility index (WSI), viscosity and setback value (SB) of KS were significantly increased, while the gelatinization temperature was significantly decreased. In addition, HUT significantly reduced the content of rapidly digestible starch (RDS) and slowly digestible starch (SDS), while it significantly enhanced the content of resistant starch (RS) (64.08–72.73%). In a word, HUT as a novel physical modification method for KS, enlarged its application, and fulfilled different demands of a starch-based product, which introduces another possibility for kiwi fruit further processing.  相似文献   

13.
In this study, the influence of multi-frequency ultrasound irradiation on the functional properties and structural characteristics of gluten, as well as the textural and cooking characteristics of the noodles were investigated. Results showed that the textural and cooking characteristics of noodles that contain less gluten pretreated by multi-frequency ultrasonic were ultrasonic frequency dependent. Moreover, the noodles that contain a smaller amount of sonicated gluten could achieve the textural and cooking quality of commercial noodles. There was no significant difference in the cooking and texture characteristics between commercial noodles and noodles with 12%, 11%, and 10% gluten pretreated by single-frequency (40 kHz), dual-frequency (28/40 kHz), and triple-frequency sonication (28/40/80 kHz), respectively. Furthermore, the cavitation efficiency of triple-frequency ultrasound was greater than that of dual-frequency and single-frequency. As the number of ultrasonic frequencies increased, the solubility, water holding capacity and oil holding capacity of gluten increased significantly (p < 0.05), and the particle size was reduced from 197.93 ± 5.28 nm to 110.15 ± 2.61 nm. Furthermore, compared to the control group (untreated), the UV absorption and fluorescence intensity of the gluten treated by multi-frequency ultrasonication increased. The surface hydrophobicity of gluten increased from 8159.1 ± 195.87 (untreated) to 11621.5 ± 379.72 (28/40/80 kHz). Raman spectroscopy showed that the α-helix content of all sonicated gluten protein samples decreased after sonication, while the β-sheet and β-turn content increased, and tryptophan and tyrosine residues were exposed. Through scanning electron microscope (SEM) analysis, the gluten protein network structure after ultrasonic treatment was loose, and the pore size of the gluten protein network increased from about 10 μm (untreated) to about 26 μm (28/40/80 kHz). This work elucidated the effect of ultrasonic frequency on the performance of gluten, indicating that with increasing frequency combination increases, the ultrasound effect became more pronounced and protein unfolding increased, thereby impacting the functional properties and the quality of the final product. This study provided a theoretical basis for the application of multi-frequency ultrasound technology in the modification of gluten protein and noodle processing.  相似文献   

14.
Ultrasound technology, which is environment-friendly and economical, has emerged as a novel strategy that can be used to enhance the partial nitrification process. However, its effect on this process remains unclear. Therefore, in this study, partial nitrification sludge was subjected to low-intensity (0.15 W/mL) ultrasound treatment for 10 min, and the effect of ultrasonic treatment on the partial nitrification process was evaluated based on changes in reactor performance, sludge characteristics, and the properties of extracellular polymeric substances (EPS). The results obtained showed that the ultrasonic treatment enhanced nitrite accumulation performance as well as the activity of ammonia-oxidizing bacteria from 3.3 to 16.6 mg O2/g VSS,⋅while inhibiting the activity of nitrite-oxidizing bacteria. Further analysis showed that owing to the ultrasonic treatment, there was an increase in EPS contents. Particularly, there was a significant increase in loosely bound polysaccharide (PS) contents, indicating the occurrence of intracellular PS anabolics as well as PS secretion. Additionally, ultrasonic treatment induced a significant increase in carbonyl, hydroxyl, and amine functional group contents, and EPS analysis results revealed that it had a positive effect on mass transfer efficiency; thus, it enhanced the partial nitrification process. Overall, this study describes the effect of intermittent low-intensity ultrasound on the partial nitrification process as well as the associated enhancement mechanism.  相似文献   

15.
用密度泛函理论(DFT)研究硝酸丙酯化合物的分子结构、振动光谱和热力学等基本性质.取BLYP、B3LYP方法和6-31G*、6-31G**、6-311G*、6-311G**基组,对硝酸丙酯分子的几何构型进行全优化计算并分析其电子结构性质.和考虑了二级相关能校正的MP2/6-311G*计算结果比较表明,B3LYP/6-31G*是研究许多较大体系化合物卓有成效和颇有前途的方法.在B3LYP/6-31G*的水平上对优化后的结构进行了正则振动频率分析,用因子0.95校正后的振动光谱和实验结果比较,符合较好.进一步  相似文献   

16.
The aim of this work was to evaluate the influence of high-intensity ultrasound (HIUS) treatment on whey protein isolate (WPI) molecular structure as a previous step for complex coacervation (CC) with kappa-carrageenan (KC) and its influence on CC functional properties. Protein suspension of WPI (1% w/w) was treated with an ultrasound probe (24 kHz, 2 and 4 min, at 50 and 100% amplitude), non HIUS pretreated WPI was used as a control. Coacervation was achieved by mixing WPI and KC dispersions (10 min). Time and amplitude of the sonication treatment had a direct effect on the molecular structure of the protein, FTIR-ATR analysis detected changes on pretreated WPI secondary structure (1600–1700 cm−1) after sonication. CC electrostatic interactions were detected between WPI positive regions, KC sulfate group (1200–1260 cm−1), and the anhydrous oxygen of the 3,6 anhydro-D-galactose (940–1066 cm−1) with a partial negative charge. After ultrasound treatment, a progressive decrease in WPI particle size (nm) was detected. Rheology results showed pseudoplastic behavior for both, KC and CC, with a significant change on the viscosity level. Further, volume increment, stability, and expansion percentages of CC foams were improved using WPI sonicated. Besides, HIUS treatment had a positive effect on the emulsifying properties of the CC, increasing the time emulsion stability percentage. HIUS proved to be an efficient tool to improve functional properties in WPI-KC CC.  相似文献   

17.
采用密度泛函理论(DFT)B3LYP方法在6-311+G(d,p)基组水平,对CaSi_n(n=1~10)的结构进行优化,得出各个尺寸下团簇处于最低能量的结构模型,并对其稳定性等物理化学性质进行理论研究,表明CaSi_2、CaSi_5和CaSi_9为幻数团簇.  相似文献   

18.
This research evaluated the effects of multi-frequency ultrasound assisted freezing (UAF) on the freezing rate, structural characteristics, and quality properties of cultured large yellow croaker. The freezing effects with triple ultrasound-assisted freezing (TUF) at 20, 28 and 40 kHz under 175 W was more obvious than that of single ultrasound-assisted freezing (SUF) at 20 kHz and dual ultrasound-assisted freezing (DUF) at 20 and 28 kHz. The results showed that UAF significantly increased the freezing rate and better preserved the quality of frozen large yellow croaker samples. Specifically, the quality parameters of the TUF-treated samples were closer to those of the fresh samples, with greater texture characteristics, a larger water holding capacity (lower thawing loss and cooking loss), lower K values and lower thiobarbituric acid reactive substances values. Light microscopy observation images revealed that the ice crystals formed by TUF were fine and evenly distributed, resulting in less damage to the frozen large yellow croaker samples. Therefore, multi-frequency UAF could improve the quality properties of the large yellow croaker samples.  相似文献   

19.
The effects of ultrasonic treatment on the structure, functional properties and bioactivity of Ovomucin (OVM) were investigated in this study. Ultrasonic treatment could significantly enhance OVM solubility without destroying protein molecules. The secondary structure changes, including β-sheet reduction and random coil increase, indicate more disorder in OVM structure. After ultrasonic treatment, the OVM molecule was unfolded partially, resulting in the exposure of hydrophobic regions. The changes in OVM molecules led to an increase in intrinsic fluorescence and surface hydrophobicity. By detecting the particle size of protein solution, it was confirmed that ultrasonic treatment disassembled the OVM aggregations causing a smaller particle size. Field emission scanning electron microscopy (FE-SEM) images showed that ultrasonic cavitation significantly reduced the tendency of OVM to form stacked lamellar structure. Those changes in structure resulted in the improvement of foaming, emulsification and antioxidant capacity of OVM. Meanwhile, the detection results of ELISA showed that ultrasonic treatment did not change the biological activity of OVM. These results suggested that the relatively gentle ultrasound treatment could be utilized as a potential approach to modify OVM for property improvement.  相似文献   

20.
The influence of high-intensity ultrasound (HIU) on the technofunctional properties and structure of jackfruit seed protein isolate (JSPI) was investigated. Protein solutions (10%, w/v) were sonicated for 15 min at 20 kHz to the following levels of power output: 200, 400, and 600 W (pulse duration: on-time, 5 s; off-time 1 s). Compared with untreated JSPI, HIU at 200 W and 400 W improved the oil holding capacity (OHC) and emulsifying capacity (EC), but the emulsifying activity (EA) and emulsion stability (ES) increased at 400 W and 600 W. The foaming capacity (FC) increased after all HIU treatments, as opposed to the water holding capacity (WHC), least gelation concentration (LGC), and foaming stability (FS), which all decreased except at pH 4 for FS. Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (Tricine-SDS-PAGE) showed changes in the molecular weight of protein fractions after HIU treatment. Scanning electron microscopy (SEM) demonstrated that HIU disrupted the microstructure of JSPI, exhibiting larger aggregates. Surface hydrophobicity and protein solubility of the JSPI dispersions were enhanced after ultrasonication, which increased the destruction of internal hydrophobic interactions of protein molecules and accelerated the molecular motion of proteins to cause protein aggregation. These changes in the technofunctional and structural properties of JSPI could meet the complex needs of manufactured food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号