首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
The effect of high-power ultrasound pretreatment on the extraction of podophyllotoxin from Podophyllum peltatum was investigated. Direct sonication by an ultrasound probe horn was applied at 24 kHz and a number of factors were investigated: particle size (0.18-0.6 mm), type of solvent (0-100% aqueous ethanol), ultrasonic treatment time (2-40 min), and power of ultrasound (0-100% power intensity, maximum power: 78 W). The optimal condition of ultrasound was achieved with 0.425-0.6 mm particle size, 10 min sonication time, 35 W ultrasound power, and water as the medium. There was no obvious degradation of podophyllotoxin with ultrasound under the applied conditions, and an improvement in extractability was observed. The SEM microscopic structure change of treated samples disclosed the effect of ultrasound on the tissue cells. The increased pore volume and surface area after ultrasonic treatment also confirmed the positive effect of ultrasound pretreatment on the extraction yield of podophyllotoxin from the plant cells.  相似文献   

2.
The ultrasound-assisted extraction (UAE) process of chlorophylls (a, b) and carotenoids in aqueous ethanol solutions from spinach leaves was upscaled from a batch laboratory reactor to a continuous modular flow-cell of pilot scale. The extraction in the laboratory scale was organized in a loop reactor, where pulp was circulated between a stirred vessel and the ultrasound reactor. The pilot scale extraction was made in a novel continuous tubular flow-cell reactor. The analysis of the experimental data proved that the ultrasound application provided a better extraction yield. In the laboratory scale, the application of ultrasound (24 kHz and 2500 W/L) showed the 2.6-fold higher maximum extraction yield compared to non-sonicated conventional solvent extraction. In the pilot scale, the effect was less significant (1.9-fold), due to smaller ultrasound power density (25 kHz and 1500 W/L). The scale-up of the UAE was based on equal extraction yield at both scales. The scale-up revealed that 2.5-fold higher volume-specific ultrasound power is required in the pilot scale to reach the yield obtained in the laboratory scale reactor.  相似文献   

3.
Wheat Dried distiller’s grain (DDG), a coproduct from the ethanol production process, is rich in potentially health-promoting phenolic compounds. In the extraction of phenolic compounds from DDG, the DDG cell wall is an important barrier for mass transfer from the inside to the outside of the cell. The effect of high-power ultrasound pretreatment on destruction of DDG cell walls and extraction yield and rate was investigated. Direct sonication by an ultrasound probe horn at 24 kHz was applied and factors such as ultrasound power and treatment time were investigated. The method of nitrogen (N2) adsorption at 77 K was used as a means to determine and compare the changes in physical properties (specific surface area, pore volume and pore size) of the treated samples at different levels of ultrasound power and treatment time. Increasing specific surface area, pore volume and pore size caused by ultrasonic treatment implied development of new or larger pores and damaged cell walls. Also, it was observed that the ultrasound pretreatment of DDG particles increased the extraction yield and rate of phenolic compounds from DDG by 14.29%. Among tested ultrasound conditions, 100% ultrasound power for 30 s was evaluated as the best pretreatment condition.  相似文献   

4.
Ultrasound, alone or in combination with natural antimicrobials, is a novel food processing technology of interest to replace traditional food decontamination methods, as it is milder than classical sterilisation (heat treatment) and maintains desirable sensory characteristics. However, ultrasound efficacy can be affected by food structure/composition, as well as the order in which combined treatments are applied. More specifically, treatments which target different cell components could result in enhanced inactivation if applied in the appropriate order. The microbial properties i.e. Gram positive/Gram negative can also impact the treatment efficacy.This work presents a systematic study of the combined effect of ultrasound and nisin on the inactivation of the bacteria Listeria innocua (Gram positive) and Escherichia coli (Gram negative), at a range of cavitation conditions (44, 500, 1000 kHz). The order of treatment application was varied, and the impact of system structure was also investigated by varying the concentration of Xanthan gum used to create the food model systems (0 – 0.5% w/v). Microbial inactivation kinetics were monitored, and advanced microscopy and flow cytometry techniques were utilised to quantify the impact of treatment on a cellular level.Ultrasound was shown to be effective against E. coli at 500 kHz only, with L. innocua demonstrating resistance to all frequencies studied. Enhanced inactivation of E. coli was observed for the combination of nisin and ultrasound at 500 kHz, but only when nisin was applied before ultrasound treatment. The system structure negatively impacted the inactivation efficacy. The combined effect of ultrasound and nisin on E. coli was attributed to short-lived destabilisation of the outer membrane as a result of sonication, allowing nisin to penetrate the cytoplasmic membrane and facilitate cell inactivation.  相似文献   

5.
The aim of the study was to investigate the influence of ultrasound treatment on the carrot tissue microstructure, colour and carotenoids content. To avoid adverse effects of rinsing out substances contained in the raw material, carrot slices were vacuum-packed and treated with ultrasounds in an ultrasonic bath using 21 and 35 kHz frequency for 10, 20 and 30 min. Images of the carrot tissue made by scanning electron microscope were analysed by calculating the cross-section area for each cell. The colour was measured using CIE Lab method. To determine total carotenoid content spectrophotometric method was used. Obtained results indicate that the structural properties of carrots treated with ultrasound were significantly different from the samples without any treatment and it was clearly noticed during analysing images of scanning electron microscope. There was observed the influence of ultrasound treatment on colour L, a and b parameters, especially for carrot treated with ultrasound for 30 min, independent of the applied frequency of the ultrasonic waves. Similarly, sonic treatment resulted in substantial increase of carotenoid in comparison to raw carrot, especially in the case of 35 kHz frequency ultrasounds. Probably, such significant increase is caused by the destruction of the original structure and thus higher extraction ability of these compounds.  相似文献   

6.
Water in oil emulsions are prepared by using an ultra-sonication device and used in an emulsion liquid membrane process in order to recover arsenic (V) ions from an aqueous medium. The aim of this work is the investigation of the effect of emulsifier concentration and composition, and also sonication time on the emulsion droplet size and the extraction efficiency in order to obtain stable emulsions with small droplets that favor the extraction. Results show that ultrasonic waves reduce internal droplet size which enhances the extraction of arsenic. In addition, internal droplet size is decreased initially and then increased by increasing Span 80 concentration. On the other hand, by increasing Span 80 concentration, extraction amount is increased and then decreased. Furthermore, emulsifier blends provide more stability for the emulsion. Increasing concentration of Tween 20 as a hydrophilic emulsifier up to an optimum concentration decreases internal droplet size and increases extraction amount. By increasing sonication time up to 4 min, the internal droplet size is decreased and the extraction amount is increased. If sonication time is increased further, the internal droplet size is increased and the extraction amount is decreased.  相似文献   

7.
This study aimed to investigate the effects of high-intensity ultrasound treatment on the functional properties and emulsion stability of Neosalanx taihuensis myofibrillar protein (MP). The results showed that the carbonyl groups, emulsification properties, intrinsic fluorescence intensity, and surface hydrophobicity of the ultrasound treated MP solution were increased compared to the MP without ultrasound treatment. The results of secondary structure showed that the ultrasound treatment could cause a huge increase of β-sheet and a decline of α-helix of MP, indicating that ultrasound induced molecular unfolding and stretching. Moreover, ultrasound reduced the content of total sulfhydryl and led to a certain degree of MP cross-linking. The microscopic morphology of MP emulsion indicated that the emulsion droplet decreased with the increase of ultrasound power. In addition, ultrasound could also increase the storage modulus of the MP emulsion. The results for the lipid oxidation products indicated that ultrasound significantly improved the oxidative stability of N. taihuensis MP emulsions. This study offers an important reference theoretically for the ultrasound modification of aquatic proteins and the future development of N. taihuensis deep-processed products represented by surimi.  相似文献   

8.
Low frequency ultrasound (LFUS) was evaluated as a novel disinfection technique within recirculating aquaculture systems both individually and combined with UV-C. Dose-dependent inactivation rates were determined for the total viable counts and model organisms representing different taxa of common fish parasites: the ciliate Paramecium sp., second larval stage (L2) of the nematode Anguillicola crassus and metanauplii of Artemia sp. Application of LFUS up to 19 kJ/L did not reduce the number of colony forming units (CFU), whilst UV-C irradiation was highly effective. Pre-treatment with LFUS reduced the mean size of suspended solids in aquaculture water and thus increased the germicidal effect of UV-C by up to 0.6 log units.LFUS was effective against the eukaryotic organisms, and the dose-dependent inactivation could be well described by functions of an exponential decay. However, the efficiency of LFUS differed greatly between species. A LFUS dose of 1.9 kJ/L (consumed energy) was sufficient to inactivate Artemia by 99%, but a ten times higher dose was necessary to inactivate 95% and 81% of Paramecium and Anguillicola larvae, respectively.In clear water, the energetic efficiency of UV-C (emitted by a low pressure lamp) against Paramecium and Anguillicola larvae was higher compared to LFUS, but LFUS was more efficient against Artemia. However, the efficiency of LFUS against ciliates or nematode larvae would be similar or even higher than UV-C in highly turbid water or if less efficient medium pressure lamps are used. This study shows that LFUS can be applied safely at energy densities that are effective against a wide range of parasites like ciliates, nematodes and crustaceans. The combination of LFUS and UV-C could provide an appropriate water treatment with regards to all relevant pathogens in recirculating aquaculture systems.  相似文献   

9.
In this study, liquid–liquid interfacial protein adsorption was proposed as a means of inactivating soy trypsin inhibitors (TIs, including Kunitz (KTI) and Bowman-Birk inhibitor (BBI)). Hexane-water was first selected as a model system to compare three emulsification methods (hand shaking, rotor–stator and ultrasound mixing). Ultrasound could generate the smallest and least polydisperse emulsion droplets, resulting in highest interfacial adsorption amount of KTI and BBI as well as the highest inactivation percentage of TIs (p < 0.05). Therefore, ultrasound was selected to further explore the effect of the non-aqueous phase on interfacial adsorption and inactivation kinetics of TIs in a food emulsion system containing vegetable oil (VTO). The adsorption amounts of KTI and BBI in the VTO-aqueous emulsion increased by ∼ 25 % compared to the hexane-aqueous emulsion. In addition, the adsorption amounts of KTI and BBI were rapidly increased as a function of sonication time, especially for the hexane-aqueous emulsion system. This result suggests that such inactivation of TIs could be implemented in continuous systems for large-scale processing. Finally, the pathways of interface-induced inactivation of BBI and KTI were investigated based on separate experiments on individual BBI and KTI systems. The results showed that the interface adsorption caused the changes in the secondary and tertiary structure of KTI that led to its activitation. However, BBI was quite stable at the liquid–liquid interface without significant conformational change. Overall, ultrasound-assisted interfacial adsorption can be considered a rapid and highly efficient method to inactivate KTI.  相似文献   

10.
This work explored the effect of ultraviolet-assisted ultrasound (US-UV) as an emerging non-thermal sterilization technology on mango juice in aspects of microbial growth and quality changes. The juice in the ice bath was subjected to US-UV treatment at different US powers (0–600 W) and times (0–40 min), and no pathogen bacteria could be detected after treatment, while the physicochemical features (particle size, suspension stability, color, content of total polyphenols, carotenoids, sugar, reducing sugar and protein) and antioxidant ability of treated juice was preserved or improved to some extent. Based on these results, we further validated its positive effects on the nutritional value (content of ascorbic acid and soluble dietary fiber, antioxidant ability) and quality parameters (titratable acid, sugar acidity, total soluble solids, rheological behavior, metal elements) of mango juice treated at the optimal US parameter (10 min, 600 W); Not only the inactivation of polyphenol oxidation enzyme, peroxidase and pectin methylesterase was achieved but also the treated juice has a significant different volatile profile compared with the fresh juice, which might offer the better color, texture, and smell. Importantly, through the HPLC-MSD-Trap-XCT (phenols) and UPLC-Q Exactive Orbitrap-MS (carotenoids) study, the US-UV treatment will not cause difference on compounds composition, but it was responsible for changes in content of individual compounds, especially the all-trans-β-carotene, became the main component of carotenoids in processed mango juice (increased from 43.72% to 75.15%, relative content), and the oxygenated carotenoids (xanthophylls) are highly sensitive to the US (reduced from 50.96% to 4.85%) while the carotenes show a strong resistance to the US (increased 49.04% to 95.15%). Thus, the overall safety and quality of mango juice were enhanced while the sensory characteristics remained stable, suggesting that this non-thermal combination sterilization processing may successfully be implemented in the commercial processing of mango juice.  相似文献   

11.
A simple theoretical model based on shear forces generated by the collapse of the ultrasound cavities near the surface of a microorganism is proposed. This model requires two parameters which take into account the number of acoustic cavitation bubbles, and the resistance of the cell wall of the microorganism to the shear forces generated by bubble collapse. To validate the model, high-power low frequency (20 kHz) ultrasound was used to inactivate two microorganisms with very different sizes, viz., a bacterium, Enterobacter aerogenes and a yeast, Aureobasidium pullulans. The inactivation ratio was experimentally measured as a function of sonication time for different ultrasound power and for different initial cell numbers. For both E. aerogenes and A. pullulans the Log of the inactivation ratio decreased linearly with sonication time, and the rate of inactivation increased (D-value decreased) with the increase in sonication power. The rate of inactivation was also found, for both microorganisms, to increase with a decrease in the initial cell number. The fits, obtained using the proposed model, are in very good agreement with the experimental data.  相似文献   

12.
The supercritical fluid extraction of chlorophylls and carotenoids from marine algae Fucus vesiculosus and Laminaria digitata with carbon dioxide was studied. Complete extraction of carotenoids with carbon dioxide was achieved at a pressure of 250 atm and a temperature of 80°C after 20 min in the absence of a cosolvent. Extraction of chlorophylls in high contents required the use of a polar co-solvent (ethanol, 10–15 vol %) or extraction time increased to 50–90 min (at a co-solvent consumption of <5 vol %). The proposed method is more express compared with extraction in a Soxhlet apparatus.  相似文献   

13.
Raw meat emulsions may have natural, spoilage and pathogenic microorganisms due to the origin and characteristics of this food matrix. All of these microorganisms must be minimized during industrial processing to make food consumption safe and meet quality regulations. Therefore, in this research, the effect of probe ultrasound on the inactivation of three kinds of microorganisms in a raw meat emulsion is evaluated. The microorganisms are: natural microflora NAM, Listeria monocytogenes LIS, and Lactobacillus delbrueckii LAC. A high-intensity probe ultrasound system was used, during 1.0, 2.5, 5.0, 7.5 and 10 min, with pulsed waves of 0.0, 10, 20 and 30 seg, and 200, 250, 300, 350 and 400 W of power. The interrelation between time, wave pulse cycle, and power factors was assessed. The results showed a positive linear independence effect in the treatments without wave pulse for each microorganism, and a quadratic interaction with the time and the ultrasound power for the inactivation of the three kinds of microorganisms. Besides, the desirability function for the inactivation reached up to 60% of the microbial population with the probe ultrasound treatment, with 10 min, a 7.56 s wave pulse and 400 W of power. Thus, these results could be useful to decide the incorporation of mild and emerging technologies in a meat industry line process.  相似文献   

14.
This study aimed to prepare an emulsion stabilised by an ultrasound-treated casein (CAS)-hyaluronic acid (HA) complex and to protect vitamin E during in vitro digestion. It was found that high-intensity ultrasound (HIU) treatment significantly changed the hydrogen bonding, electrostatic interaction and hydrophobic interaction between CAS and HA, reduced the particle size of the CAS-HA complex, increased the intermolecular electrostatic repulsion, and thus significantly improved the emulsifying properties of the CAS-HA complex. Meanwhile, the creaming index (CI) and confocal laser scanning microscopy images showed that the stability of the CAS-HA-stabilised emulsion was the best when treated at 150 W for 10 min, which could be attributed to the enhanced adsorption capacity of the CAS-HA complex at the oil–water interface and the viscosity of the formed emulsion. In vitro digestion experiments revealed that the emulsion stabilised by the ultrasound-treated CAS-HA complex had a good protective effect on vitamin E. This study is significant for the development of emulsions for the delivery of lipophilic nutrients.  相似文献   

15.
For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model.Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C. butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A. niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C. butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A. niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion’s stability.  相似文献   

16.
The paper deals with experimental data concerning the interaction of acoustical waves with microbial cell (Porphyridium sp.). The aim of the present paper was to increase the amount of biopolymer released from the microorganisms biomass with the aid ultrasound irradiation without scission or a decrease in the molecular weight. The results indicated that the amount of polysaccharide (for example) released from the cell pellet could be enhanced by ultrasound, depending on the frequency and energy of the ultrasound. The sugar composition remain the same, but the apparent viscosity of polysaccharide aqueous solutions decreased, indicated that some changes in the molecular shape and size occurred. When ultrasound irradiation was applied in the presence of either CO2 or CO2 + H2, the apparent viscosity of polysaccharide aqueous solutions increased (versus usual ultrasound treatment). The text was submitted by the authors in English.  相似文献   

17.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

18.
Supercritical carbon dioxide (SC-CO2) is a novel method for food pasteurization, but there is still room for improvement in terms of the process shortening and its use in products with high oil content. This study addressed the effect of high power ultrasound (HPU) on the intensification of the SC-CO2 inactivation of E. coli and B. diminuta in soybean oil-in-water emulsions. Inactivation kinetics were obtained at different pressures (100 and 350 bar), temperatures (35 and 50 °C) and oil contents (0, 10, 20 and 30%) and were satisfactorily described using the Weibull model. The experimental results showed that for SC-CO2 treatments, the higher the pressure or the temperature, the higher the level of inactivation. Ultrasound greatly intensified the inactivation capacity of SC-CO2, shortening the process time by approximately 1 order of magnitude (from 50 to 90 min to 5–10 min depending on the microorganism and process conditions). Pressure and temperature also had a significant (p < 0.05) effect on SC-CO2 + HPU inactivation for both bacteria, although the effect was less intense than in the SC-CO2 treatments. E. coli was found to be more resistant than B. diminuta in SC-CO2 treatments, while no differences were found when HPU was applied. HPU decreased the protective effect of oil in the inactivation and similar microbial reductions were obtained regardless of the oil content in the emulsion. Therefore, HPU intensification of SC-CO2 treatments is a promising alternative to the thermal pasteurization of lipid emulsions with heat sensitive compounds.  相似文献   

19.
This study aimed to investigate the mechanism of different treatments, namely, ultrasound (US), chlorogenic acid (CA), and ultrasound combined with chlorogenic acid (US plus CA) on the inactivation of Staphylococcus aureus planktonic and biofilm cells. Results showed that the combined treatment of US and CA exhibited remarkable synergistic antibacterial and antibiofilm effects. Scanning electron microscopy images indicated that the combined treatment of US and CA caused the most serious damage to the cell morphology. Confocal laser scanning microscopy images revealed that the combined treatment led to sharp increase and severe damage to the permeability of the cell membrane, causing the release of ATP and nucleic acids and decreasing the exopolysaccharide contents in S. aureus biofilm. Finally, the combined treatment of US plus 1% CA for 60 min inactivated S. aureus cells by 1.13 lg CFU/g on mutton. Thus, the combined treatment of US and CA had synergistic effect against S. aureus under planktonic, biofilm, and food systems.  相似文献   

20.
Buriti (Mauritia flexuosa L.) is a significant source of carotenoids, but these compounds have been extracted using laborious and low-effective methods. The present work evaluated the high-intensity ultrasound combined with a chemometric approach to developing an optimal extraction method of carotenoids from buriti pulp. The multivariate optimization was carried out through two steps. First, a simplex-lattice mixture design was used to optimize the extractor solution finding higher extraction yield (903 ± 21 µg g−1) with the acetone:ethanol (75/25) mixture. After, sample mass (80 mg) and sonication time (30 min) were optimized applying central composite design (CCD) which provided a 14% improvement in the extraction method yield. So, the total carotenoid content (TCC) with optimal extraction conditions was 1026 ± 13 µg g−1 which is almost twice the yield of methods known in the literature for buriti. The RP-HPLC-DAD analysis revealed that the carotenoids are gently extracted and β-carotene is the major compound in the extracts. To confirm the accuracy, buriti samples spiked with β-carotene standard and the developed method showed recovery >84% and precision <6.5%. Furthermore, the optimized ultrasound-assisted extraction (UAE) method was applied to other samples (tomato, guava, carrot, mango, acerola, papaya, and pumpkin) and presented a yield to 5.5-fold higher when compared to the reported methods indicating high robustness. Based on results, the UAE method developed has demonstrated feasibility and reliability for the study of carotenoids in buriti pulp as well as in other plant matrices with high biological relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号