共查询到20条相似文献,搜索用时 15 毫秒
1.
The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past decades,the lattice Boltzmann method has emerged as a promising tool to address such complexities.In this regard,we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field.A problem as a benchmark is studied to check the consistency and applicability of the model.The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics,as well as the screening effect on an acoustic multibubble medium.It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster. 相似文献
2.
3.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W. 相似文献
4.
Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound. 相似文献
5.
The cavitation-mediated bioeffects are primarily associated with the dynamic behaviors of bubbles in viscoelastic tissues, which involves complex interactions of cavitation bubbles with surrounding bubbles and tissues. The radial and translational motions, as well as the resultant acoustic emissions of two interacting cavitation bubbles in viscoelastic tissues were numerically investigated. Due to the bubble–bubble interactions, a remarkable suppression effect on the small bubble, whereas a slight enhancement effect on the large one were observed within the acoustic exposure parameters and the initial radii of the bubbles examined in this paper. Moreover, as the initial distance between bubbles increases, the strong suppression effect is reduced gradually and it could effectively enhance the nonlinear dynamics of bubbles, exactly as the bifurcation diagrams exhibit a similar mode of successive period doubling to chaos. Correspondingly, the resultant acoustic emissions present a progressive evolution of harmonics, subharmonics, ultraharmonics and broadband components in the frequency spectra. In addition, with the elasticity and/or viscosity of the surrounding medium increasing, both the nonlinear dynamics and translational motions of bubbles were reduced prominently. This study provides a comprehensive insight into the nonlinear behaviors and acoustic emissions of two interacting cavitation bubbles in viscoelastic media, it may contribute to optimizing and monitoring the cavitation-mediated biomedical applications. 相似文献
6.
In the present paper, the collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall is experimentally investigated with a high-speed photography system. For a symmetrical setup, the two primary control parameters of the bubble collapsing behavior include the equivalent maximum bubble radius and the distance between the bubble and the edge of the rigid wall. Based on the bubble interface deformation during the collapsing process, three typical cases are identified for the categorization of the phenomenon with the influences of the parameters revealed. Through a quantitative analysis of the obtained high-speed photos, the motions of the bubble interface in different directions are given together with the calculations of the bubble centroid. The primary findings of the present paper could be summarized in terms of the bubble-edge distance as follows. When the bubble is close to the edge, the movement of the bubble interface near the edge will be restricted with a clear neck formation in the middle part of the bubble. For this case, the edge could delay the bubble collapsing time up to 22% of the Rayleigh collapsing time. When the bubble is of the medium distance to the edge, the differences of the expansion or shrinkage of the bubble interface among different directions will be reduced with an olive-shaped bubble formed during the collapsing process. For this range of parameters, the bubble moves rapidly toward the edge especially during the final collapsing stage. When the bubble is far away from the edge, the bubble will be a nearly spherical one. 相似文献
7.
The dynamics of a bubble near a corner formed by two flat rigid boundaries (walls), is studied experimentally using a spark-generated bubble. The expansion, collapse, rebound, re-collapse and migration of the bubble, along with jetting and protrusion, are captured using a high-speed camera. Our experimental observations reveal the behaviour of the bubble in terms of the corner angle and the dimensionless standoff distances to the near and far walls in terms of the maximum bubble radius. The bubble remains approximately spherical during expansion except for its surface becoming flattened when in close proximity to a wall. When a bubble is initiated at the bisector of the two walls, the bubble becomes oblate along the bisector during the late stages of collapse. A jet forms towards the end of collapse, pointing to the corner. The closer the bubble to the two walls, the more oblate along the bisector the bubble becomes, and the wider the jet. A bubble initiated near one of the two walls is mainly influenced by the nearer wall. The jet formed is pointing to the near wall but inclined towards the corner. After the jet penetrates through the bubble surface, the bubble becomes a bubble ring, and a bubble protrusion forms following the jet. The bubble ring collapses and subsequently disappears, while the protrusion firstly expands, and then collapses and migrates to the corner. 相似文献
8.
The collapse of laser-induced bubbles in water is investigated by high speed photography at framing rates as high as 20 million frames per second. The case of a spherical bubble in an unbounded liquid is compared with the Gilmore model. Bubbles collapsing in front of a solid wall show a rich dynamics depending on their normalized distance. Unprecedented details are given of the generic sequence of events leading to multiple shock waves and bubble shape metamorphosis upon collapse. 相似文献
9.
This paper tries to discern the mechanistic features of sonochemical degradation of recalcitrant organic pollutants using five model compounds, viz. phenol (Ph), chlorobenzene (CB), nitrobenzene (NB), p-nitrophenol (PNP) and 2,4-dichlorophenol (2,4-DCP). The sonochemical degradation of the pollutant can occur in three distinct pathways: hydroxylation by OH radicals produced from cavitation bubbles (either in the bubble–bulk interfacial region or in the bulk liquid medium), thermal decomposition in cavitation bubble and thermal decomposition at the bubble–liquid interfacial region. With the methodology of coupling experiments under different conditions (which alter the nature of the cavitation phenomena in the bulk liquid medium) with the simulations of radial motion of cavitation bubbles, we have tried to discern the relative contribution of each of the above pathway to overall degradation of the pollutant. Moreover, we have also tried to correlate the predominant degradation mechanism to the physico-chemical properties of the pollutant. The contribution of secondary factors such as probability of radical–pollutant interaction and extent of radical scavenging (or conservation) in the medium has also been identified. Simultaneous analysis of the trends in degradation with different experimental techniques and simulation results reveals interesting mechanistic features of sonochemical degradation of the model pollutants. The physical properties that determine the predominant degradation pathway are vapor pressure, solubility and hydrophobicity. Degradation of Ph occurs mainly by hydroxylation in bulk medium; degradation of CB occurs via thermal decomposition inside the bubble, degradation of PNP occurs via pyrolytic decomposition at bubble interface, while hydroxylation at bubble interface contributes to degradation of NB and 2,4-DCP. 相似文献
10.
In our previous paper, we derived a new single bubble model including the effect of bulk viscosity. To confront it to experiments, single bubble dynamics was measured here in 30% (v/v) glycerol-water mixture under different acoustic amplitudes and compared to models including or not the effect of bulk viscosity. The results showed that calculated bubble dynamics were not significantly affected by the bulk viscosity within the experimental conditions used in this study. However, there was a noticeable delay for the first rebound when bulk viscosity was considered. The corresponding sonoluminescence intensities were collected and compared with theoretical predictions. The results did not allow to discriminate between the two models (one includes the effect of bulk viscosity, the other does not), confirming the negligible effect of bulk viscosity in this condition (30% (v/v) glycerol-water mixture). Due to the instability of a single bubble in higher viscosity solutions, we could not implement experiments that can discriminate between the two models. 相似文献
11.
High-speed video microscopy and computer enhanced imagery in the pursuit of bubble dynamics 总被引:1,自引:0,他引:1
The equipment and method for studying transient bubble dynamics are described in simple sonochemical reactors and presented using still frames from high-speed video microscopy (500 fps). Effects on aeration bubbles (mean size 1–3 mm diameter) and the cavitation induced species (<0.5 mm diameter) are studied. The images are computer enhanced to improve interpretation of such features as the maximum ellipsoidal distortion at the nodal sound plane and spherical shape regain with due consideration of energy involved and expansion effects at the nodal sound plane. Also immersion depth/pressure effects, as the bubbles transcend the sound field column, in the cylindrical reactor, are recorded for evaluation of nodal and antinodal sound wave effects. Positions of the nodal and antinodal regions are marked using a novel tungsten halogen bulb technique and verified using the sonoelectroluminescent approach with the classical luminol/hydrogen peroxide chemistry which is enhanced under the sound field conditions. 相似文献
12.
A model system consisting of a thin layer of vacuum-deposited metallic aluminium on a glass microscope slide was developed to demonstrate the effectiveness of cavitational activity (occurring within the cooling water supply of a dental ultrasonic descaler operating at 25 kHz) in the removal of particulate matter from solid surfaces. The pattern of particulate matter removal using this model system demonstrated both the mechanism of bubble activity and the erosive nature of microbubbles.Non-resonant bubbles were formed by surface wave activity and adhered to the surface of the slide. There was some removal of the aluminium metal at the periphery of the bubble (probably by a microstreaming mechanism) giving a ‘ghost’ outline. The majority of aluminium removal was caused by numerous microbubbles of non-resonant sizes (typically 1 to 2 μm diameter) formed by surface wave induced fragmentation of the parent bubble.The damaging and erosive effects of transient cavitational activity appear to be the result of sub-resonant sized microbubble formation from larger parent bubbles. 相似文献
13.
从球状泡群气泡动力学方程出发, 考虑泡群间次级声辐射的影响, 得到了声场中两泡群共同存在时气泡振动的动力学方程, 并以此为基础探讨声波驱动下双泡群振动系统的共振响应特征. 由于泡群间气泡间的相互作用, 系统存在低频共振和高频共振现象, 两不同共振频率的数值与泡群内气泡的本征频率相关. 泡群内气泡的本征频率又受到初始半径、泡群大小和泡群内气泡数量的影响. 气泡自由振动和驱动声波的耦合激起泡群内气泡的受迫振动, 气泡初始半径、气泡数密度和驱动声波频率等都会影响泡群内气泡的振动幅值和初相位.
关键词:
气泡群
共振
声响应
超声空化 相似文献
14.
O. Louisnard 《Ultrasonics sonochemistry》2012,19(1):66-76
In a companion paper, a reduced model for propagation of acoustic waves in a cloud of inertial cavitation bubbles was proposed. The wave attenuation was calculated directly from the energy dissipated by a single bubble, the latter being estimated directly from the fully nonlinear radial dynamics. The use of this model in a mono-dimensional configuration has shown that the attenuation near the vibrating emitter was much higher than predictions obtained from linear theory, and that this strong attenuation creates a large traveling wave contribution, even for closed domain where standing waves are normally expected. In this paper, we show that, owing to the appearance of traveling waves, the primary Bjerknes force near the emitter becomes very large and tends to expel the bubbles up to a stagnation point. Two-dimensional axi-symmetric computations of the acoustic field created by a large area immersed sonotrode are also performed, and the paths of the bubbles in the resulting Bjerknes force field are sketched. Cone bubble structures are recovered and compare reasonably well to reported experimental results. The underlying mechanisms yielding such structures is examined, and it is found that the conical structure is generic and results from the appearance a sound velocity gradient along the transducer area. Finally, a more complex system, similar to an ultrasonic bath, in which the sound field results from the flexural vibrations of a thin plate, is also simulated. The calculated bubble paths reveal the appearance of other commonly observed structures in such configurations, such as streamers and flare structures. 相似文献
15.
The objective of this paper is to investigate the transient conical bubble structure (CBS) and acoustic flow structure in ultrasonic field. In the experiment, the high-speed video and particle image velocimetry (PIV) techniques are used to measure the acoustic cavitation patterns, as well as the flow velocity and vorticity fields. Results are presented for a high power ultrasound with a frequency of 18 kHz, and the range of the input power is from 50 W to 250 W. The results of the experiment show the input power significantly affects the structures of CBS, with the increase of input power, the cavity region of CBS and the velocity of bubbles increase evidently. For the transient motion of bubbles on radiating surface, two different types could be classified, namely the formation, aggregation and coalescence of cavitation bubbles, and the aggregation, shrink, expansion and collapse of bubble cluster. Furthermore, the thickness of turbulent boundary layer near the sonotrode region is found to be much thicker, and the turbulent intensities are much higher for relatively higher input power. The vorticity distribution is prominently affected by the spatial position and input power. 相似文献
16.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application. 相似文献
17.
Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid–structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution. 相似文献
18.
A mathematical model describing the dynamics of clustered gas bubbles under the effect of an acoustic field is presented. The proposed model is used as the basis for an analytical study of small bubble oscillations in monodisperse and polydisperse clusters and for a numerical study of nonlinear bubble oscillations under high-amplitude external pressures. The following effects are found to occur in a polydisperse cluster: a synchronization of the collapse phases of bubbles with different radii and a collapse intensification for bubbles of one size in the presence of bubbles of another size. These effects are explained by the interaction between bubbles of different radii in the cluster. 相似文献
19.
20.
The interaction between spherical cavitation bubble and flat wall is transformed into that between the real bubble and imaging bubble by the method of images. Firstly, we investigate the dynamics of real bubble and matched, inversed or mis-matched imaging bubble driven by a small amplitude ultrasound, revealing the characteristics of the interaction between cavitation bubble and rigid, soft and impedance walls. Then, we emphatically study the dynamics of real bubble and mis-matched imaging bubble driven by a finite amplitude ultrasound, and the interaction characteristics between cavitation bubble and real impedance wall are revealed. The results show that the cavitation bubble is always close to the rigid wall and far away from the soft wall; For the impedance wall, whether the cavitation bubble is far away or close depends on the specific wall parameters. Moreover, the direction and magnitude of bubble's translation velocity can be changed by adjusting the driving parameters. Understanding the interaction between cavitation bubble and impedance wall is of great significance for efficient application of ultrasonic cavitation. 相似文献