首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The mechanism of the reaction of osmium atom with acetaldehyde has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/sdd/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, C-O, and methyl C-H activation. These reactions can lead to four different products (HOsCH3 + CO, OsCO + CH4, OsCOCH3 + H, and OsO + C2H4). The minimum energy reaction path is found to involve the spin inversion in the initial reaction step. This potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.  相似文献   

2.
The gas‐phase reaction mechanism between methane and rhodium monoxide for the formation of methanol, syngas, formaldehyde, water, and methyl radical have been studied in detail on the doublet and quartet state potential energy surfaces at the CCSD(T)/6‐311+G(2d, 2p), SDD//B3LYP/6‐311+G(2d, 2p), SDD level. Over the 300–1100 K temperature range, the branching ratio for the Rh(4F) + CH3OH channel is 97.5–100%, whereas the branching ratio for the D‐CH2ORh + H2 channel is 0.0–2.5%, and the branching ratio for the D‐CH2ORh + H2 channel is so small to be ruled out. The minimum energy reaction pathway for the main product methanol formation involving two spin inversions prefers to both start and terminate on the ground quartet state, where the ground doublet intermediate CH3RhOH is energetically preferred, and its formation rate constant over the 300–1100 K temperature range is fitted by kCH3RhOH = 7.03 × 106 exp(?69.484/RT) dm3 mol?1 s?1. On the other hand, the main products shall be Rh + CH3OH in the reactions of RhO + CH4, CH2ORh + H2, Rh + CO +2H2, and RhCH2 + H2O, whereas the main products shall be CH2ORh + H2 in the reaction of Rh + CH3OH. Meanwhile, the doublet intermediates H2RhOCH2 and CH3RhOH are predicted to be energetically favored in the reactions of Rh + CH3OH and CH2ORh + H2 and in the reaction of RhCH2 + H2O, respectively. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

3.
Four aluminum alkyl compounds, [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlMe2] ( 1 ), [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlEt2] ( 2 ), [CH{(CH3)CN‐2‐iPrC6H4}2AlMe2] ( 3 ), and [CH{(CH3)CN‐2‐iPrC6H4}2AlEt2] ( 4 ), bearing β‐diketiminate ligands [CH{(Me)CN‐2,4,6‐MeC6H2}]2 (L1H) and [CH{(Me)CN‐2‐iPrC6H4}]2 (L2H) were obtained from the reactions of trimethylaluminum, triethylaluminum with the corresponding β‐diketiminate, respectively. All compounds were characterized by 1H NMR and 13C NMR spectroscopy, single‐crystal X‐ray structural analysis, and elemental analysis. Compounds 1 – 4 were found to catalyze the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) with good activity.  相似文献   

4.
The reaction mechanism of the Y+ cation with CH3CHO has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ECP/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, methyl C-H and C-O activation. These reactions can lead to four different products (Y+CH4 + CO, Y+CO + CH4, Y+COCH2 + H2 and Y+O + C2H4). The minimum energy reaction path is found to involve the spin inversion in the different reaction steps, this potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.  相似文献   

5.
The gas-phase reaction of palladium atom with acetone is investigated using density functional theory. Geometries and energies of the reactants, intermediates, and products involved are calculated. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of an ??2-CH3COCH3-metal complex, followed by C-O, C-H, and C-C activation. These reactions can lead to four different products (PdO + C3H6, PdCH2COCH3 + H, PdCH2 + CH3CHO, and PdCOCH2 + CH4). The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.  相似文献   

6.
The magnetic susceptibility tensors of the C-H bonds in the CH4, C2H6, C3H8, n-C5H12, iso-C5H12, and neo-C5H12 molecules have been calculated by the method of varying the vector potential with the use of a multiparameteric gradient-transformation function, which was constructed in the form of a polynomial in spherical coordinates and takes into account the electron correlation. The influence of the electron correlation on the magnetic properties of C-H bonds is greater than that in homonuclear molecules (H2) and bonds (C-C) and increases strongly with enhancement of the electron correlation in the wave function not perturbed by an external magnetic field. In contrast to the previously established identity of the magnetic properties of C-C bonds, the magnetic properties of C-H bonds depend both on the structure and geometry of the molecule as a whole and on the location of the bond itself in the molecule. The values of the mean susceptibility of the molecules considered calculated in the additive approximation are in good agreement with the experimental values.  相似文献   

7.
The triafulvene molecule (c‐C4H4)—the simplest representative of the fulvene family—has been synthesized for the first time in the gas phase through the reaction of the methylidyne radical (CH) with methylacetylene (CH3CCH) and allene (H2CCCH2) under single‐collision conditions. The experimental and computational data suggest triafulvene is formed by the barrierless cycloaddition of the methylidyne radical to the π‐electron density of either C3H4 isomer followed by unimolecular decomposition through elimination of atomic hydrogen from the CH3 or CH2 groups of the reactants. The dipole moment of triafulvene of 1.90 D suggests that this molecule could represent a critical tracer of microwave‐inactive allene in cold molecular clouds, thus defining constraints on the largely elusive hydrocarbon chemistry in low‐temperature interstellar environments, such as that of the Taurus Molecular Cloud 1 (TMC‐1).  相似文献   

8.
A detailed investigation has been performed at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311+G(d,p) level for the reaction of NCO with C2H5 by constructing singlet and triplet potential energy surfaces (PES). The results show that the title reaction is more favorable on the singlet PES than on the triplet PES. On the singlet PES, the initial addition processes are barrierless and release lots of energy. The dominant channel occurs via the fragmentations of the initial adduct C2H5NCO and C2H5OCN to form C2H4 + HNCO and HOCN, respectively. With higher barrier heights, other products such as CH4 + HNC + CO, CH3CHNH + CO, CH3CH + HNCO, and CH3CN + H2 + CO are less competitive. On the triplet PES, the entrance reactions surpass significant barriers; therefore, it could be negligible at the normal atmospheric condition. However, the most feasible channel on the triplet PES is the direct hydrogen abstraction channel to form CH2CH2 + HNCO. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
The influence of donor and acceptor substituents at chain termini on the geometry of the chain and charge distribution on atoms was studied for the ground and lower triplet electronically excited state of model ω-dimethylaminopolyene molecules (CH3)2N(CH=CH) n CH=C(CN)2, n = 1–3. Calculations were performed by the B3LYP/6-31+G** method. The influence of substituents on bond lengths and the amplitude of deviations from the equilibrium carbon-carbon bond length in unsubstituted polyenes increased as the conjugation chain grew longer. The deviations of the effects of both donor and acceptor groups from additivity, however, decreased. In the lower triplet electronically excited state of the molecule, the effect of substituents on changes in C-C bond lengths along the chain was not damped. The section of the potential energy surface for intramolecular proton shift from the donor amino to the acceptor nitrile group in “cyclic” (cis) conformers of the H2N-CH=CH-CN and H2N-CH=CH-CH=CH-CN molecules was analyzed. The structure of the reaction transition state and the height of the barrier to proton transfer were calculated.  相似文献   

10.
The potential energy surfaces (PES), energies E, and activation barriers h of elementary reactions of dissociative addition of CH4 and C2H6 molecules to the Al12Ti cluster with a marquee structure in the singlet and triplet states were calculated within the B3LYP approximation of the density functional theory using the 6-31G* basis set. The first stage of the reaction Al12Ti + CH4 leads to the adsorption complex CH4 · Al12Ti with the R(TiC) distance of ~2.4 Å. The methane molecule is coordinated as a tridentate ligand the singlet state and as a bidentate ligand in the triplet state, although both coordination modes are close in energy. In the transition state, the CH4 molecule is coordinated through its active C-H bond to an inclined Ti-Al edge of the cluster, and the C-H bond is significantly elongated and weakened. The activation barrier height h referenced to the CH4 complex is ~9 and ~19 kcal/mol for the singlet and triplet, respectively, and that referenced to the primary products Al12Ti(CH3)(H) is ~21 kcal/mol. The barrier to migration of the CH3 group around the metal cluster is estimated at ~10 kcal/mol. At the initial stage of the reaction Al12Ti + C2H6, two types of C2H6 · Al12Ti adsorption complexes are formed. In one of them, the ethane molecule is coordinated through a methyl group (as the methane molecule); and in the other type, the coordination is through the C-C bond. This reaction can proceed through two paths by means of insertion into C-H or C-C bonds to give Al12Ti(C2H5)(H) or Al12Ti(CH3)2, respectively. The second path is impeded by a high barrier (~30 kcal/mol) and is possible, if at all, only at high temperatures. Conversely, the insertion into a C-H bond in ethane is somewhat more favorable than in methane. Analogously, the PES of addition of the second methane molecule to Al12Ti(CH3)(H) was calculated. The second molecule is adsorbed and dissociates by the same mechanism as the first CH4 molecule, but with somewhat lower barriers and energy effect of formation of Al12Ti(CH3)2(H)2. The addition of propane and longer hydrocarbons is briefly considered. The results are compared with the results of previous analogous calculations of the PES of related reactions of dissociative adsorption of dihydrogen on the Al12Ti cluster, which are more exothermic, have lower barriers, and can occur under milder conditions.  相似文献   

11.
Summary Usingab initio potential surfaces, classical (co-planar) trajectory calculations were made for the combination of H+BeH and of CH+CH. For the former reaction, disproportionation to H2+Be was rare, occurring only for a linear H...H...Be configuration. Likewise, in the second case, the formation of CH2+C occurs only via a direct reaction. The principal mechanism in the CH+CH reaction is to form [C2H2]*, which dissociates into C2H + H, or very occasionally, directly into C2+H2. If the energy is very high, the C2H radical can dissociate into C2+H, but sometimes [C2H2]* itself may dissociate simultaneously into C2+H+H.  相似文献   

12.
The competition between C-C and C-H insertion in model transition-metal reactions with cyclopropane and propene (C3H6) was studied as a function of total energy. Insertion of neutral transition metal atoms M (= Y, Zr, Nb, and Mo*) into the C-C bonds of cyclopropane led to formation of MCH2 + C2H4, whereas C-H insertion produced MC3H4 + H2. The measured product branching ratios verify the relative potential energy barrier heights for C-C and C-H insertion predicted by ab initio calculations.  相似文献   

13.
The silene molecule (H2SiCH2; X1A1) has been synthesized under single collision conditions via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with silane (SiH4). Exploiting crossed molecular beams experiments augmented by high-level electronic structure calculations, the elementary reaction commenced on the doublet surface through a barrierless insertion of the methylidyne radical into a silicon-hydrogen bond forming the silylmethyl (CH2SiH3; X2A′) complex followed by hydrogen migration to the methylsilyl radical (SiH2CH3; X2A′). Both silylmethyl and methylsilyl intermediates undergo unimolecular hydrogen loss to silene (H2SiCH2; X1A1). The exploration of the elementary reaction of methylidyne with silane delivers a unique view at the widely uncharted reaction dynamics and isomerization processes of the carbon–silicon system in the gas phase, which are noticeably different from those of the isovalent carbon system thus contributing to our knowledge on carbon silicon bond couplings at the molecular level.  相似文献   

14.
羧酸铜催化反应的研究——Ⅰ.羧酸铜催化醛肟转变为睛   总被引:1,自引:0,他引:1  
本文报道了在多种羧酸铜催化下,醛肟在含有氰基的溶剂中(如CH_3CN、CH_3OCH_2CH_2CN等),均可脱水转变成相应的腈。反应条件温和,产率较高。具有不同空间和电性效应取代基的羧酸铜对反应的产率影响不大。实验中还发现溶剂乙腈参与了上述反应。  相似文献   

15.
The photochemical reaction of (C(5)Me(5))Rh(PMe(3))H(2) (1) in neat acetonitrile leads to formation of the C-H activation product, (C(5)Me(5))Rh(PMe(3))(CH(2)CN)H (2). Thermolysis of this product in acetonitrile or benzene leads to thermal rearrangement to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(CH(3))(CN) (4). Similar results were observed for the reaction of 1 with benzonitrile. The photolysis of 1 in neat benzonitrile results in C-H activation at the ortho, meta, and para positions. Thermolysis of the mixture in neat benzonitrile results in clean conversion to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(C(6)H(5))(CN) (5). DFT calculations on the acetonitrile system show the barrier to C-H activation to be 4.3 kcal mol(-1) lower than the barrier to C-C activation. A high-energy intermediate was also located and found to connect the transition states leading to C-H and C-C activation. This intermediate has an agostic hydrogen interaction with the rhodium center. Reactions of acetonitrile and benzonitrile with the fragment [Tp'Rh(CNneopentyl)] show only C-H and no C-C activation. These reactions with rhodium are compared and contrasted to related reactions with [Ni(dippe)H](2), which show only C-CN bond cleavage.  相似文献   

16.
Single crystals of [Be33‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be33‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects.  相似文献   

17.
Kersten M. Gericke 《Tetrahedron》2008,64(26):6002-6014
The synthesis of novel tetracyclic fused pyrroles from 1-(2-iodophenyl)-1H-pyrrole and various bromoalkyl-aryl alkynes via a palladium(0)-catalyzed and norbornene-mediated threefold domino reaction is reported. PdCl2 and tri-2-furylphosphine (TFP) in the presence of norbornene and Cs2CO3 in CH3CN at 90 °C gave a variety of tetracyclic fused pyrroles in usually high yields. In the described reaction sequence two of the three carbon-carbon bonds are formed by functionalization of an unactivated aryl C-H bond.  相似文献   

18.
The geometries of the amines NH2X and amido anions NHX?, where X = H, CH3, NH2, OH, F, C2H, CHO, and CN have been optimized using ab initio molecular orbital calculations with a 4-31G basis set. The profiles to rotation about the N? X bonds in CH3NH?, NH2NH?, and HONH? are very similar to those for the isoprotic and isoelectronic neutral compounds CH3OH, NH2OH, and HOOH. The amines with unsaturated bonds adjacent to the nitrogen atoms undergo considerable skeletal rearrangement on deprotonation such that most of the negative charge of the anion is on the substituent. The computed order of acidity for the amines NH2X is X = CN > HCO > F ≈ C2H > OH > NH2 > CH3 > H and for the reaction NHX? + H+ → NH2X the computed energies vary over the range 373–438 kcal/mol.  相似文献   

19.
The mechanism for the C2H3 + CH3OH reaction has been investigated by the Gaussian‐4 (G4) method based on the geometric parameters of the stationary points optimized at the B3LYP/6–31G(2df, p) level of theory. Four transition states have been identified for the production of C2H4 + CH3O (TSR/P1), C2H4 + CH2OH (TSR/P2), C2H3OH + CH3 (TSR/P3), and C2H3OCH3 + H (TSR/P4) with the corresponding barriers 8.48, 9.25, 37.62, and 34.95 kcal/mol at the G4 level of theory, respectively. The rate constants and branching ratios for the two lower energy H‐abstraction reactions were calculated using canonical variational transition state theory with the Eckart tunneling correction at the temperature range 300–2500 K. The predicted rate constants have been compared with existing literature data, and the uncertainty has been discussed. The branching ratio calculation suggests that the channel producing CH3O is dominant up to about 1070 K, above which the channel producing CH2OH becomes very competitive.  相似文献   

20.
The methylgermylene species (HGeCH3; X1A′) has been synthesized via the bimolecular gas phase reaction of ground state methylidyne radicals (CH) with germane (GeH4) under single collision conditions in crossed molecular beams experiments. Augmented by electronic structure calculations, this elementary reaction was found to proceed through barrierless insertion of the methylidyne radical in one of the four germanium-hydrogen bonds on the doublet potential energy surface yielding the germylmethyl (CH2GeH3; X2A′) collision complex. This insertion is followed by a hydrogen shift from germanium to carbon and unimolecular decomposition of the methylgermyl (GeH2CH3; X2A′) intermediate by atomic hydrogen elimination leading to singlet methylgermylene (HGeCH3; X1A′). Our investigation provides a glimpse at the largely unknown reaction dynamics and isomerization processes of the carbon-germanium system, which are quite distinct from those of the isovalent carbon system thus providing insights into the intriguing chemical bonding of organo germanium species on the most fundamental, microscopic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号