首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study investigated the effects of high-power ultrasound (HPU, 0–45 °C, 242–968 W/cm2, 2–16 min) on the rheological properties of strawberry pulp. Following the HPU treatment, the strawberry pulp exhibited an increase in apparent viscosity, storage modulus (G′), and loss modulus (G″). The water-soluble pectin (WSP), pectin methylesterase (PME) activity, and free calcium ions (Ca2+) of the strawberry pulp after HPU treatment were investigated to determine a possible reason for this phenomenon. HPU caused a significant decrease in the degree of esterification (DE), molecular weight (Mw), and particle size of strawberry WSP, but no significant changes were evident in the galacturonic acid (GalA) content and the zeta (ζ)-potential (P > 0.05), resulting in decrease in the apparent viscosity. Moreover, the largest reduction of PME activity was 22.6% after HPU treatment at 605 W/cm2 and 45 °C for 16 min, indicating that the PME was resistant to the HPU treatments. The free Ca2+ content in the strawberry pulp was significantly decreased after exposure to HPU (P < 0.05). The maximal reduction of 52.01% in the free Ca2+ was achieved at 605 W/cm2 and 45 °C for 16 min. The overall results indicated that the high residual activity (RA) of PME after HPU might induce the low esterification of WSP, while HPU promoted the interaction of free Ca2+ and low-methylated pectin, to form the network structure of Ca2+-low-methylated pectin, resulting in an increase in viscosity in the complex strawberry system.  相似文献   

2.
Vijaya  N.  Selvasekarapandian  S.  Sornalatha  M.  Sujithra  K.S.  Monisha  S. 《Ionics》2017,23(10):2799-2808

Research has been undertaken to develop polymer electrolytes based on biodegradable natural polymers such as cellulose acetate, starch, gelatin, and chitosan, which are being used as polymer hosts for obtaining new polymer electrolytes for their applications in various electrochemical devices such as batteries, sensors, and electrochromic windows. Pectin is a naturally available material which is extracted from the skin of citrus fruits. Pectins, also known as pectic polysaccharides, are rich in galacturonic acid. The present study focuses on the proton-conducting polymer electrolytes based on the biopolymer pectin doped with ammonium chloride (NH4Cl) and ammonium bromide (NH4Br) prepared by solution casting technique. The prepared membranes are characterized using XRD, FTIR, and AC impedance techniques to study their complexation behavior, amorphous nature, and electrical properties. The conductivity of pure pectin membrane has been found to be 9.41 × 10−7 S cm−1. The polymer systems with 30 mol% NH4Cl-doped pectin and 40 mol% NH4Br-doped pectin have been found to have maximum ionic conductivity of 4.52 × 10−4 and 1.07 × 10−3 S cm−1, respectively. The conductivity value has increased by three orders of magnitude compared to pure pectin membrane. The dielectric behavior of both the systems has been explained using dielectric permittivity and electric modulus spectra.

  相似文献   

3.
In order to find a new Er-doped host for near infrared (NIR) optical amplifiers, a study on the optimization of the erbium emission ions in the Y2O3–Al2O3–SiO2 system was performed. (100 ? x) Y3Al5O12 ? (x) SiO2 powders (x varies from 0 to 70, in mol%) with a fixed Er2O3 concentration of 1.0 mol% were synthesized by a modified Pechini method and heat-treated at 900 and 1000 °C. The photoluminescence (PL) spectra at 1540 nm of the 4I13/2 → 4I15/2 transition of Er3+ ions and the up-conversion spectra at visible region (2H11/2 + 4S3/2 + 4F9/2 → 4I15/2) upon 980 nm excitation were evaluated. Different techniques, such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and Fourier transform infrared spectroscopy (FT-IR) were considered to evaluate crystallization and phase-evolution of the powders as a function of the silica content (x) and annealing temperature. The analyses were based on the comparison between two different solvents used in the preparation of the polymeric resins: ethanol and water. The optimal conditions for ethanol are quite different than the conditions for water used as solvent, confirming that the PL properties at the NIR region are highly sensitive to the changes in the host stoichiometry and processing conditions. The highest emission intensity at 1540 nm was observed for x = 30 for ethanol and x = 70 for water, treated at 900 and 1000 °C, respectively. This result could be attributed to the combination of low symmetry and good dispersion of the Er3+ions in these hosts.  相似文献   

4.
0.7BiFeO3-0.3BaTiO3+1mol% MnO2(0.7BFO-0.3BTO) ceramics were synthesized by conventional solid-state powder method under different calcination temperatures (Tcal) between 770 and 830 °C. The phase structure, microstructure, and ferroelectric and piezoelectric properties changed greatly depending on the applied Tcal. Benefitting from the formation of low defect levels and large grain size and an appropriate morphotropic phase boundary (MPB) with the rhombohedral-to-pseudocubic phase ratio = 49.1 : 50.9, BFO-BTO ceramics calcined at 785 °C showed the best ferroelectric, piezoelectric, and insulating properties (Pr = 23.1 μC/cm2, EC = 25.8 kV/cm, d33 = 167.8 pC/N, kp = 0.342%). Above Tcal = 800 °C, however, the ferroelectric and piezoelectric properties deteriorated because volatilization of Bi and reduction of Fe caused a poor insulating property and high degree of chemical inhomogeneity. Moreover, the ceramics calcined at 785 °C showed a high Curie temperature (TC) of 509.2 °C and excellent thermal aging resistance of d33 up to 450 °C, demonstrating great potential for use in high-temperature applications.  相似文献   

5.
We reported the role of A-site modification on the structural, ferroelectric, optical and electrical field-induced strain properties of Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 lead-free piezoceramics. The Li+ ions with concentration from 0 to 5 mol% were used to substitute at A-site. There was no phase transition when Li+ ions was added up to 5 mol%. The electric field-induced strain (Smax/Emax) values increased from 600 to 643 pm/V for 2 mol% Li+-added which results from distortion both rhombohedral and tetragonal phase structures. The band gap reduced from 2.88 to 2.68 eV and the saturation polarization decreased from 46.2 to 26.1 μC/cm2 when Li+ ions concentration increased from 0 to 5 mol% respectively. We expect that this work could be helpful for further understanding the role of A-site dopants in comparison with B-site modification in lead-free Bi0.5(Na,K)0.5TiO3-based ceramics.  相似文献   

6.
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.  相似文献   

7.
In the study, in order to develop the lead-free piezoelectric ceramics for actuator, transformer and other electronic-devices application, (K0.5Na0.5)(Nb0.9+xTa0.1)O3 + 0.5 mol% CuO + 0.2 mol% MnO2 ceramics were prepared by conventional mixed oxide method. The effects of B-site non-stoichiometry in [(K0.5Na0.5)] [(Nb0.9+xTa0.1)O3] ceramics on microstructure and piezoelectric properties were investigated. The density, electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric constant (d33), TC and TO-T of NKNT ceramics with x = 0.0065 showed the optimum values of 4.58 g/cm3, 0.427, 1554, 109 pC/N, 373 °C and 226 °C, respectively, suitable for piezoelectric motor, and transformer applications.  相似文献   

8.
TL characteristics of powder form of Al2O3 doped with 0.1 mol% carbon and co-doped with different magnesium concentrations of 0.1 mol% and 0.2 mol% exposed to Cobalt-60 gamma ray at doses ranging from 5 Gy to 70 Gy were investigated. The recorded glow curves consist a dominant peak at 180 °C for a heating rate of 1 °C s−1. The TL sample with 0.2 mol% Mg concentration have higher response compared to the sample with 0.1 mol% Mg concentration for a delivered dose of 5 Gy. The TL response has linear relationship with delivered dose for both samples. The TL sensitivity was found as 277.9 nC mg−1 Gy−1 for the sample with Mg concentration 0.2 mol% and 128.2 nC mg−1 Gy−1 for 0.1 mol% Mg. However, the sample with 0.1 mol% Mg concentration has better fading properties compared to the sample with 0.2 mol% Mg concentration. Both samples show good reproducibility with value less than 13%. The experimental value of effective atomic number, Zeff is 9.21 and 9.44 for the sample with Mg concentration 0.1% mol and 0.2% mol, respectively, which are near to Zeff of bone with a value of about 11.6.  相似文献   

9.
A trace amount (0.5 mol%) of CuO-doped 40Li2O–32Nb2O5–28SiO2 glass (mol%) exhibits the formation of copper metal layers at the glass surface by annealing at temperatures (530 °C) below the glass transition temperature (544 °C) in the reduced atmosphere of 7% H2–93%Ar. The coordination state of copper ions is examined from optical absorption and Fourier transform infrared (FT-IR) spectrum measurements, indicating the formation of Si–OH and Si–H bonds due to the diffusion of hydrogen into the inside of the glass and the reduction of Cu+ and Cu2+ ions. The mechanism of the formation of copper metals at the surface is proposed, in which the key points are the reduction of Cu2+ to Cu+ ions due to the hydrogen and the migration of Cu+ ions in the interior of the glass to the surface. The first finding on copper metal layers at the glass surface might have a potential for practical applications such as electrodes in glass.  相似文献   

10.
The effects of ultrasound on the molecular weight of apple pectin were investigated. The structure and rheological properties of the degradation products were also tentatively identified by High Performance Liquid Chromatography–Photodiode Array Detector (HPLC–PAD), Infrared spectroscopy (IR), Nuclear Magnetic Resonance spectroscopy (NMR) and Rheometer. The results indicated that the weight-average molecular weight of apple pectin decreased obviously after ultrasound treatment. The molecular weight of degradation products had a uniform and narrow distribution. Ultrasound intensity and temperature play an important role in the degradation reaction. Degradation kinetics model of apple pectin fitted to 1/Mt ? 1/M0 = kt from 5 to 45 °C. The degree of methylation of apple pectin reduced according to IR analysis when ultrasound was applied. Ultrasound treatment could not alter the primary structure of apple pectin according to the results determined by HPLC, IR and NMR. Meanwhile, the viscosity of apple pectin was 103 times as large as that of ultrasound-treated apple pectin. The ultrasound-treated apple pectin showed predominantly viscous responses (G′ < G″) over the same frequency range. The results suggested that ultrasound provided a viable alternative method for the modification of pectin.  相似文献   

11.
In the present work policrystals of α − Al2O3 doped with terbium were synthesized using the solvent evaporation method. The samples were prepared using Al(NO3)3·9H2O and Tb(NO3)3·5H2O reagents, with Tb concentrations between 1 and 5 mol% and thermally treated at high temperature above ∼1400 °C. X-ray diffraction measurements showed the α-phase formation of samples. TL glow curve presented an intense peak at ∼190 °C and two other with low intensity at 290 and 350 °C after gamma irradiation. The best doping concentration which presented high luminescence was the sample doped with 3 mol% of Tb. TL spectra and fluorescence measurements showed similar luminescence spectra with lines attribute to Tb3+ ions. A linear behavior to gamma dose between 1 and 20 Gy was observed in TL, using 190 °C peak as well as in OSL signal, this last carried out using 532 nm wavelength stimulation.  相似文献   

12.
Escherichia coli K12 cells suspended in apple cider were treated by manothermosonication (MTS, 400 kPa/59 °C), thermosonication (TS, 100 kPa/59 °C), and manosonication (MS, 400 kPa/55 °C) for up to 4 min. A 5-log reduction was achieved in 1.4 min by MTS, 3.8 min by TS, and 2.5 min by MS. The inactivation curves of the E. coli exhibited a fast initial reduction followed by a slow inactivation section. The Weibull, log–logistic, and biphasic linear models showed a good fit of the inactivation data. Quality analyses were conducted with raw apple cider (control), thermally-pasteurized (TP), and MTS-, TS-, and MS-treated cider samples over a 3-week period at refrigeration temperature. Titratable acidity and pH did not differ among any of the samples. During storage, the turbidity value of the control was the highest, followed by TP, TS, MTS and MS. All color parameters of the TP sample were significantly different from those receiving the other treatments. The control and sonicated samples showed similar color parameters during storage. In total, 97 aroma compounds were identified in the control, TS-, MS-, and MTS-treated cider samples, while 95 aroma compounds were found in the TP at Week 0. Among all the aroma compounds, 9 key ones were identified in all samples, including ethyl 2-methylbutanoate, butyl acetate, 1-butanol, ethyl hexanoate, 1-hexanol, butanoic acid, β-damascenone, hexanoic acid, and octanoic acid. The profiles of the key aroma compounds in all sonicated samples were more similar to the control than the TP sample at Weeks 0 and 3.  相似文献   

13.
In this work, we reported the effect of Li2CO3 addition on the structural, optical, ferroelectric properties and electric-field-induced strain of Bi0.5(Na,K)0.5TiO3 (BNKT) solid solution with CaZrO3 ceramics. Both rhombohedral and tetragonal structures were distorted after adding Lithium (Li). The band gap values decreased from 2.91 to 2.69 eV for 5 mol% Li-addition. The maximum polarization and remanent polarization decreased from 49.66 μC/cm2 to 27.11 μC/cm2 and from 22.93 μC/cm2 to 5.35 μC/cm2 for un-doped and 5 mol% Li- addition BNKT ceramics, respectively. The maximum Smax/Emax value was 567 pm/V at 2 mol% Li2CO3 access. We expected this work will help to understand the role of A-site dopant in lead-free ferroelectric BNKT materials.  相似文献   

14.
Cu2ZnSn(SxS1?x)4 (CZTSSe) thin films were prepared by annealing a stacked precursor prepared on Mo coated glass substrates by the sputtering technique. The stacked precursor thin films were prepared from Cu, SnS2, and ZnS targets at room temperature with stacking orders of Cu/SnS2/ZnS. The stacked precursor thin films were annealed using a tubular two zone furnace system under a mixed N2 (95%) + H2S (5%) + Se vaporization atmosphere at 580 °C for 2 h. The effects of different Se vaporization temperature from 250 °C to 500 °C on the structural, morphological, chemical, and optical properties of the CZTSSe thin films were investigated. X-ray diffraction patterns, Raman spectroscopy, and X-ray photoelectron spectroscopy results showed that the annealed thin films had a single kesterite crystal structure without a secondary phase. The 2θ angle position for the peaks from the (112) plane in the annealed thin films decreased with increasing Se vaporization temperature. Energy dispersive X-ray results showed that the presence of Se in annealed thin films increased from 0 at% to 42.7 at% with increasing Se vaporization temperatures. UV–VIS spectroscopy results showed that the absorption coefficient of all the annealed thin films was over 104 cm?1 and that the optical band gap energy decreased from 1.5 eV to 1.05 eV with increasing Se vaporization temperature.  相似文献   

15.
This study was performed to evaluate the responses of Escherichia coli 0157:H7 inoculated in an apple-carrot blended juice to manothermosonication (MTS) treatments. The MTS treatments were conducted in a continuous-flow MTS system. The juice samples were exposed to ultrasound treatment at combinations of three temperatures (60, 50 and 40 °C) and three pressure levels (100, 200, and 300 kPa) for five residence times (15, 30, 45, 60, and 75 s). The results showed that higher treatment temperature (i.e. 60 °C) and hydrostatic pressure in the MTS system significantly enhanced the microbial reduction. A FDA mandated 5-log CFU/ml reduction of E. coli 0157:H7 for juice processing was achieved in 30 s for MTS treatment at 60 °C, in comparison to 60 s at 50 °C. The Weilbull and Log-logistic models provided the best fitting of the inactivation data for the MTS treatments. Extensive damage of E. coli 0157:H7 cells treated with MTS was observed on micro-images of scanning electron microscopy and transmission electron microscopy.  相似文献   

16.
The formation of complex species of dioxouranium(VI) ion with EDTA was studied in the pH range of 1–3.5 and at 25 °C using a combination of potentiometric and spectrophotometric techniques. Results showed evidence for formation of the following species: [UO2H4EDTA]2+, [UO2H3EDTA]+, and [UO2H2EDTA]. Investigations were performed in sodium perchlorate as background electrolyte at 0.1, 0.3, 0.5, 0.7, and 1.0 mol dm? 3. The parameters based on the formation constants were calculated, and the dependences of protonation and the stability constants on ionic strength are described. The dependence on ionic strength of the formation constants was analyzed using the specific ion interaction theory (SIT) model. The stability constant values at infinite dilution, obtained using SIT model, are log β°141 = 6.77, log β°131 = 5.99 and log β°121 = 9.29, where indexes for the overall stability constant, βpqr, refer to the equilibrium pUO22+ + qH+ + rL4? ? MpHqLr(2p + q ? 4r). The specific interaction coefficients are also reported.  相似文献   

17.
Phase transformations in squaric acid (H2C4O4) have been investigated by thermogravimetry and differential scanning calorimetry with different heating rates β. The mass loss in TG apparently begins at onset temperatures Tdi=245±5 °C (β=5 °C min?1), 262±5 °C (β=10 °C min?1), and 275±5 °C (β=20 °C min?1). A polymorphic phase transition was recognized as a weak endothermic peak in DSC around 101 °C (Tc+). Further heating with β=10 °C min?1 in DSC revealed deviation of the baseline around 310 °C (Ti), and a large unusual exothermic peak around 355 °C (Tp), which are interpreted as an onset and a peak temperature of thermal decomposition, respectively. The activation energy of the thermal decomposition was obtained by employing relevant models. Thermal decomposition was recognized as a carbonization process, resulting in amorphous carbon.  相似文献   

18.
《Solid State Ionics》2006,177(13-14):1149-1155
The Lu2+xTi2−xO7−x/2 (x = 0; 0.052; 0.096; 0.286; 0.44; 0.63; 33.3–49 mol% Lu2O3) nanoceramics with partly disordered pyrochlore-type structure are prepared by sintering freeze-dried powders obtained by a co-precipitation technique with 1600 °C annealing. Similar to pyrochlore-like compositions in the zirconate system, some of the new titanates are good oxide-ion conductors in air. The new solid-state electrolytes have oxide-ion conductivity in the interval of 1.0 × 10 3  2.5 × 10 S/cm at 740 °C in air. This value of conductivity is comparable with that of ZrO2/Y2O3 ceramics. The conductivity of Lu2+xTi2−xO7−x/2 depends on the chemical composition. The highest ionic conductivity is exhibited by nearly stoichiometric Lu2+xTi2−xO7−x/2 (x = 0.096; 35.5 mol% Lu2O3) material containing ∼ 4.8 at.% LuTi anti-site defects.  相似文献   

19.
Fluorinated ceramics with initial composition (1−x)CaTiO3+xPbF2+xLiF were sintered at 950 °C. The X-ray diffraction (XRD) patterns of the samples showed the formation of a novel solid solution in the initial composition range 0⩽x⩽0.125. SEM observations were performed on fractured ceramics and DSC analyses were carried out from room temperature up to 600 °C. Three second-order phase transitions were detected for all the samples. Capacitors were prepared from the pre-sintered ceramics then dielectric measurements were performed as a function of temperature in the frequency range 102–4×107 Hz. The ε′r−T curves exhibit the profile of dielectrics for class I capacitors, however the values of tan δ are too high (tan δ⩾1%).  相似文献   

20.
《Solid State Ionics》2006,177(9-10):885-892
Tri block-copolymer poly(iminoethylene)-b-poly(oxyethylene)-b-poly(iminoethylene) with a poly(oxyethylene) central block (PEI-b-PEO-b-PEI) were used as a “dual” matrix for polymer electrolytes having selectivity for hard cations (Li+/PEO) in one phase and for soft cations (Cu2+/PEI) in the other. Conductivity measurements were recorded for 20:1, 12:1 and 8:1 coordinating atom (O or/and N) to cation (Li+, Cu2+) ratios, for each of the three complexes studied: PEI-b-PEO-LiTFSI-b-PEI, PEI-Cu(TFSI)2-b-PEO-b-PEI-Cu(TFSI)2 and PEI-Cu(TFSI)2-b-PEO-LiTFSI-b-PEI-Cu(TFSI)2. For either low (20 °C) or high temperature (80 °C) the highest conductivity was given by the polymer electrolyte based on Cu(TFSI)2 with N/Cu2+ = 20:1 (10 6, respectively 2 × 10 4 S cm 1). In the present paper, the conductivity evolution is discussed in relation with the polymer structure, the type and the concentration of the salt and the thermal behavior of our systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号