共查询到6条相似文献,搜索用时 0 毫秒
1.
Rhenium oxide nanoparticles have been prepared using ultrasonication at 20 kHz. Samples characterization was committed via SEM-EDX, TEM, XRD, and Raman spectroscopy. Various experimental parameters were examined, including precursor/substrate amounts, ultrasonication intensity, and type of solvent used. Insights to the agglomeration of the prepared nanoparticles depending on the preparation parameters are given. As ultrasonic source we used either an ultrasonic probe by Sonics & Materials Inc. (20 kHz, 750 W net output) or a Bandelin SONOPULS HD 3200 ultrasound generator (20 kHz, 200 W net output) at intensities between 30 and 100 W/cm2. The rhenium oxide nanoparticles haven been decorated on state-of-the-art anode materials (NiO/GDC) for solid oxide fuel cells (SOFCs) in order to prepare catalytically more active anode powders. These experiments revealed that ultrasonication intensity and solvents used are able to affect final nanoparticles size distribution and morphology. At the same time, ratio of precursor and substrate compounds amounts as well as ultrasonication intensity and duration were all found to affect the decoration loading extend of nanoformations on substrate powders. The results showing the influence of the above-mentioned parameters allowed for the quantification of the effects on the loading and the preferable sites of the decoration. 相似文献
2.
Copper (Cu) based metal oxides have high electrocatalytic ability. In this work, we are synthesized stone-like cuprous oxide particles (Cu2O SNPs) covered on acid functionalized graphene oxide (GOS) sheets using ultrasonic process (50 kHz and 100 W). Besides, the chemical structural and crystalline analyses of Cu2O SNPs@GOS composites were characterized by transmission electron microscopy, X-ray crystallography and energy-dispersive X-ray spectroscopy. The Cu2O SNPs@GOS nanomaterials were tested towards detection of 8-hydroxydeoxyguanosine (8-OHdG) in biological samples. As expected Cu2O SNPs@GOS catalyst modified electrodes performed an outstanding catalytic ability on 8-hydroxydeoxyguanosine oxidation. 8-OHdG is oxidative stress biomarker. Further, it is noted that the detection performance of Cu2O SNPs@GOS coated electrodes and it’s highly enhanced due to the synergistic effect of Cu2O SNPs and GOS. Besides, the modified materials provide more electro-active faces and as well as rapid electron transport pathway and shorten diffusion. Moreover, oxidation of 8-OHdG sensor is exploring a long linear or working range of 0.02–1465 µM and high sensitivity (8.75 nM). The viability of the Cu2O SNPs@GOS proposed electrochemical methods have tested, to find out 8-OHdG concentrations in biological fluids (blood serum and urine) with a satisfying recovery ranges. 相似文献
3.
Ultrasonic-enhanced surface-active bismuth trisulfide based core–shell nanomaterials were developed and used as an efficient modified electrode material to construct a highly sensitive antibiotic sensor. The core–shell Bi2S3@GCN electrode material was directly synthesized by in-situ growth of GCN on Bi2S3 to form core–shell like nanostar (Ti-horn, 30 kHz, and 70 W/cm2). The electrocatalyst of Bi2S3@GCN nanocomposites was efficaciously broadened towards electrochemical applications. As synthesized Bi2S3@GCN promoted the catalytic ability and electrons of GCN to transfer to Bi2S3. The single-crystalline GCN layers were uniformly grown on the surface of the Bi2S3 nanostars. Under the optimal conditions of electrochemical analysis, the CPL sensor exhibited responses directly proportional to concentrations (toxic chemical) over a range of 0.02–374.4 μM, with a nanomolar detection limit of 1.2 nM (signal-to-noise ratio S/N = 3). In addition, the modified sensor has exhibited outstanding selectivity under high concentrations of interfering chemicals and biomolecules. The satisfactory CPL recoveries in milk product illustrated the credible real-time application of the proposed Bi2S3@GCN sensors for real samples, indicating promising potential in food safety department and control. Additionally, the proposed electrochemical antibiotic sensor exhibited outstanding performance of anti-interfering ability, high stability and reproducibility. 相似文献
4.
Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd–Pt alloy/multi-walled carbon nanotubes (Pd–Pt/CNTs) nanocomposites. A good number of Pd–Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd–Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd–Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells. 相似文献
5.
Nano plates of two Cd(II)-based metal–organic frameworks, [Cd2(oba)2(4-bpdb)2]n·(DMF)x(TMU-8) and [Cd(oba)(4,4′-bipy)]n·(DMF)y (TMU-9) were synthesized via sonochemical reaction by using various time and concentrations of initial reagents and power of irradiation and characterized by scanning electron microscopy, X-ray powder diffraction and IR spectroscopy. Moreover, the effect of triethylamine on speed of nucleation during the synthesis was investigated. Thermolysis of these MOFs at 550 °C under air atmosphere yields CdO nanoparticles. 相似文献
6.
Activated carbon (AC) composite with HKUST-1 metal organic framework (AC–HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02 g, 4 min, 10 mg L−1 were obtained for pH, AC–HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC–HKUST-1 estimated to be 133.33, 129.87 and 65.37 mg g−1 which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80 mg g−1, respectively. 相似文献