首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a non-thermal processing method, the ultrasound treatment prior to the frying process has been demonstrated with great potential in reducing the oil absorption of fried food. This research aimed to evaluate the effect of ultrasound pretreatment on starch properties, water status, pore characteristics, and the oil absorption of potato slices. Ultrasound probe set with two power (360 W and 600 W) at the frequency of 20 kHz for 60 min was applied to perform the pretreatments. The results showed that ultrasound pretreatment led to the surface erosion of starch granules and higher power made the structure of starch disorganized. Moreover, the fraction of bound water and immobilized water were changed after ultrasonic pretreatment. Pores with the minor diameters (0.4–3 μm and 7–12 μm) were formed after ultrasound pretreatment. The penetrated surface oil (PSO) content, and structure oil (STO) content were reduced by 27.31% and 22.25% respectively with lower power ultrasound pretreatment. As the ultrasound power increased, the surface oil (SO) content and PSO content increased by 25.34% and 12.89% respectively, while STO content decreased by 38.05%. By using ultrasonic prior to frying, the quality of potato chips has been greatly improved.  相似文献   

2.
The initial water content was closely related to the oil absorption and properties of fried food. The effects of convective air drying (D) and ultrasound combined convective air drying (UD) pretreatment on the properties and oil absorption of potato chips have been investigated. The oil contents were 48.48 ± 1.42% and 39.78 ± 3.08% for control samples (without D and UD pretreatment) and ultrasound treated samples (without D pretreatment). When the mass loss of samples was reached the proportion of quality to without drying samples quality 80%, 50%, and 20%, the oil contents of D pretreated samples decreased by 12.67%, 28.24% and 62.07%, respectively, and the oil contents of UD pretreated samples decreased by 7.42%, 24.10% and 51.76% (compared to the ultrasound pretreated samples ), respectively. By applying ultrasound before frying, more cracks and pores were exhibited of fried potato chips. After drying process, potato chips exhibited less disruption of cell structure and less deformation of cell irregular. The hardness of the D and UD pretreated potato chips increased with the extension of drying. The FTIR analysis stated the formation of amylose-lipid complexes. This research could contribute to providing evidence for the development and application of the pretreatment strategies.  相似文献   

3.
This study analyzes the effects of ultrasonic waves on the drying kinetics of Tremella fuciformis during microwave vacuum drying. The physicochemical properties and structural characteristics of T. fuciformis polysaccharides (TFPs) were studied by drying tremella samples using hot air drying (HAD), microwave vacuum drying, ultrasonic pretreatments with microwave vacuum drying (US + MVD), and air-borne ultrasonic pretreatments combined with microwave vacuum drying (USMVD) under acoustic energy densities of 0.14, 0.28, and 0.42 W/mL. The results showed that USMVD and US + MVD accelerated the mass transfer process of T. fuciformis. Compared with HAD treatment, TFP samples obtained by USMVD and US + MVD had a reduced molecular weight to a certain extent, and they had stronger shear thinning ability. In addition, USMVD-TFPs at 0.42 W/mL retained higher total sugar, reducing sugar, and uronic acid, and the degree of reduction in the monosaccharide component content was small.  相似文献   

4.
This study examined anthocyanin extraction using the application of ultrasound to raw freeze dried, microwaved and raw sliced Purple Majesty potato, a new pigmented potato variety rich in anthocyanins. A 20 kHz probe was used for the sonication at 3 different amplitudes (30%, 50% and 70%) and ethanol in water at different ratios (50:50 and 70:30 v/v) was used for the extraction. Anthocyanin extraction from raw freeze dried purple potato was optimal at an ethanol:water ratio (70:30; v/v) after 5 min of ultrasonication, while the least amount of anthocyanins was extracted from raw sliced potatoes. The application of microwaves (as a pre-treatment) before the UAE resulted in an increase in the amount of anthocyanins extracted and a decrease in the amount of solvent used. Analysis of variance showed that potato form, ultrasonication time, ultrasonication amplitude and solvent ratio as well as two and three way interactions between some of these factors had a very significant effect (p < 0.000) on the amount of anthocyanins extracted.  相似文献   

5.
Oil saturated cylindrical sandstone cores were placed into imbibition cells where they contacted with an aqueous phase and oil recovery performances were tested with and without ultrasonic radiation keeping all other conditions and parameters constant. Experiments were conducted for different initial water saturation, oil viscosity and wettability. The specifications of acoustic sources such as ultrasonic intensity (45–84 W/sq cm) and frequency (22 and 40 kHz) were also changed. An increase in recovery was observed with ultrasonic energy in all cases. This change was more remarkable for the oil-wet medium. The additional recovery with ultrasonic energy became lower as the oil viscosity increased. We also designed a setup to measure the ultrasonic energy penetration capacity in different media, namely air, water, and slurry (sand + water mixture). A one-meter long water or slurry filled medium was prepared and the ultrasonic intensity and frequency were monitored as a function of distance from the source. The imbibition cells were placed at certain distances from the sources and the oil recovery was recorded. Then, the imbibition recovery was related to the ultrasonic intensity, frequency, and distance from the ultrasonic source.  相似文献   

6.
The objective of this study was to evaluate the effects of single ultrasound (360 W, 20 min), single microwave (10 W/g, 120 s) and ultrasonic–microwave combination treatment on shrimp surimi gel properties. The structure and physicochemical properties of myofibrillar protein (MP) were also determined. Low-field nuclear magnetic resonance showed that the fluidity of water molecules and the moisture content decreased, the stability and water holding capacity (WHC) increased after single ultrasound, single microwave and ultrasonic–microwave combination treatment. Compared with the traditional water bath treatment, ultrasound and microwave treatment reduced the total sulfhydryl content and promoted the formation of intermolecular disulfide bonds and hydrophobic interactions, which improved the compactness of the network structure of shrimp surimi gel. Moreover, Fourier transform infrared spectroscopy and sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis revealed that these treatments not only inhibited the degradation of MP, but also decreased the α-helix content and increased the β-sheet content. The three treatments also significantly reduced the particle size and decreased the solubility of MP. Overall, the effect of ultrasonic–microwave combination treatment was superior to that of either single treatment.  相似文献   

7.
Eucalyptus oil (EO) is a natural and effective antimicrobial agent; however, it has disadvantages such as poor water solubility and instability. The aim of this study was to investigate the effect of process vessels and preparation process parameters on the particle size of the emulsion droplets using ultrasonic technique and response surface methodology to prepare eucalyptus oil nanoemulsion (EONE). The optimal sonication process parameters in conical centrifuge tubes were confirmed: sonication distance of 0.9 cm, sonication amplitude of 18%, and sonication time of 2 min. Under these conditions, the particle size of EONE was 18.96 ± 4.66 nm, the polydispersity index was 0.39 ± 0.09, and the zeta potential was −31.17 ± 2.15 mV. In addition, the changes in particle size, potential, micromorphology, and anti-Escherichia coli activity of EONE during digestion were investigated by in vitro simulated digestion. The emulsion was stable in simulated salivary fluid, tended to aggregate in simulated gastric fluid, and increased in particle size and potential value in simulated intestinal fluid. EONE showed higher anti-E. coli activity than EO by simulated digestion. These results provide a useful reference for the in vivo antimicrobial application of the essential oil.  相似文献   

8.
Physicochemical properties and microstructure of gluten protein, and the structural characteristics of steamed bread with 30 % potato pulp (SBPP) were investigated by ultrasonic treatments. Results showed that 400 W ultrasonic treatment significantly (P < 0.05) increased the combination of water and substrate in the dough with 30 % potato pulp (DPP). The contents of wet gluten, free sulfhydryl (SH), and disulfide bond (SS) were influenced by ultrasonic treatment. Moreover, UV-visible and fluorescence spectroscopy demonstrated that the conformation of gluten protein was changed by ultrasonic treatment (400 W). Fourier transform infrared (FT-IR) illustrated that the β-sheet content was significantly (P < 0.05) increased (42 %) after 400 W ultrasonic treatment, and the surface hydrophobicity of gluten protein in SBPP increased from 1225.37 (0 W ultrasonic treatment) to 4588.74 (400 W ultrasonic treatment). Ultrasonic treatment facilitated the generation of a continuous gluten network and stabilized crumb structure, further increased the specific volume and springiness of SBPP to 18.9 % and 6.9 %, respectively. Those findings suggested that ultrasonic treatment would be an efficient method to modify gluten protein and improve the quality of SBPP.  相似文献   

9.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

10.
A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41–53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model.  相似文献   

11.
Sweet potato peels are rich in chlorogenic acids. In this work, we applied ultrasound technology to extract the main compounds from sweet potato peel and used multivariate analysis and principal component analysis (PCA) to evaluate the effects of different extraction conditions on the extraction of chlorogenic acids. The extraction was studied varying ultrasonic power density (20, 35 and 50 W/L) and processing time (5, 10, 20 and 40 min) using an ultrasonic bath operating at 25 kHz. The chemical analysis was carried out by UPLC-qTOF-MS, and the results were evaluated by PCA and PLS-DA chemometric analysis. Results show that both ultrasonic power density and processing time influences in the extraction of different chlorogenic acid, and that different extraction conditions can be used to selectively extract specific caffeoylquinic acids and feruloylquinic acids in higher amounts. Ultrasound promoted the hydrolysis of tricaffeoylquinic acid when subjected to ultrasonic waves (20–50 W/L), and of 3,4-caffeyolquinic acid at high ultrasonic power density (50 W/L).  相似文献   

12.
Ultrasound assisted enzymatic method was applied to the degumming of arachidonic acid (ARA) oil produced by Mortierella alpina. The conditions of degumming process were optimized by response surface methodology with Box- Behnken design. A dephosphorization rate of 98.82% was achieved under optimum conditions of a 500 U/kg of Phospholipase A1 (PLA1) dosage, 2.8 mL/100 g of water volume, 120 min of ultrasonic time, and 135 W of ultrasonic power. The phosphorus content of ultrasonic assisted enzymatic degumming oil (UAEDO) was 4.79 mg/kg, which was significantly lower than that of enzymatic degumming oil (EDO, 17.98 mg/kg). Crude Oil (CO), EDO and UAEDO revealed the similar fatty acid compositions, and ARA was dominated (50.97 ~ 52.40%). The oxidation stability of UAEDO was equivalent to EDO and weaker than CO, while UAEDO presented the strongest thermal stability, followed by EDO and CO. Furthermore, aldehydes, acids and alcohols were identified the main volatile flavor components for the three oils. The proportions of major contributing components such as hexanal, nonanal, (E)-2-nonanal, (E, E)-2,4-decadienal, (E)-2-nonenal and aldehydes in UAEDO and EDO were all lower than CO. Overall, Ultrasound assisted enzymatic degumming proved to be an efficient and superior method for degumming of ARA oil.  相似文献   

13.
Effects of ultrasound (US, 300, 400, and 500 W) and slightly acidic electrolyzed water (SAEW, 10, 30, and 50 mg/L) combination on inactivating Rhizopus stolonifer in sweet potato tuberous roots (TRs) were investigated. US at 300, 400, and 500 W simultaneous SAEW with available chlorine concentration of 50 mg/L at 40 and 55 °C for 10 min significantly inhibited colony diameters (from 90.00 to 6.00–71.62 mm) and spores germination (p < 0.05). US + SAEW treatment could destroy cell membrane integrity and lead to the leakage of nucleic acids and proteins (p < 0.05). Scanning and transmission electron microscopy results showed that US + SAEW treatment could damage ultrastructure of R. stolonifer, resulted in severe cell-wall pitting, completely disrupted into debris, apparent separation of plasma wall, massive vacuoles space, and indistinct intracellular organelles. US500 + SAEW50 treatment at 40 and 55 °C increased cell membrane permeability, and decreased mitochondrial membrane potential of R. stolonifer. In addition, US500 + SAEW50 at 40 °C and US300 + SAEW50 at 55 °C controlled R. stolonifer growth in sweet potato TRs during 20 days of storage, suggesting effective inhibition on the infection of R. stolonifer. Therefore, US + SAEW treatment could be a new efficient alternative method for storing and preserving sweet potato TRs.  相似文献   

14.
In this study, ultrasound application at two different frequencies (37 or 80 kHz) and durations (15 or 30 min) was used as a pre-treatment for raw broiler breasts, and its effect on cooling, color, textural and sensory characteristics of cooked broiler breasts during vacuum cooling process was determined. The anterior and posterior parts of broiler breast halves were carefully removed, and these parts with a 20 mm width were named as the regions A and B, respectively. Both regions were vacuum-packed and pre-treated by ultrasound, followed by oven-cooking in aluminum foils, and cooling time, weight loss and temperature distribution characteristics were determined. Besides sensory and textural properties, the effect of the ultrasound pre-treatment on the pH, dry matter and ash contents and color (CIELAB) values of cooked breasts was determined. During vacuum cooling, ultrasound pre-treatment significantly reduced cooling time required to cool cooked broiler breasts from 85 °C to 12.5 °C, and the lowest values for the regions A and B were obtained for the 30 min ultrasound pre-treatment at 37 kHz as 12.72 and 14.61 min, respectively (p < 0.05). The cooling losses of breasts from the regions A and B were 12.64 and 11.61%, respectively. In comparison to immersion pre-treatment, increasing the frequency and duration of ultrasound pre-treatment generally decreased cooking loss values for both A and B regions while cooling loss increased. Instrumental hardness values of breast samples for the 15 min ultrasound pre-treatment decreased while they increased with the 30 min pre-treatment (p < 0.05) at both frequencies. The redness values (a*) increased by ultrasound pre-treatment while the highest value was found for a 30 min pre-treatment at 80 kHz for both regions. Sensory hardness (on a 14.5 cm scale) results indicated that the highest value (9.33) was determined for a 30 min ultrasound pre-treatment at 37 kHz while the ultrasound pre-treatment at 37 kHz for 15 min had no negative effect on hardness compared to control samples (p > 0.05). In conclusion, ultrasound pre-treatment can be successfully used for the vacuum cooling process of broiler breasts for the reduction of cooling time, and a 30 min ultrasound pre-treatment at 37 kHz can provide relatively superior cooling characteristics.  相似文献   

15.
In this study, a novel ultrasonic vacuum (USV) drying technique was used to shorten the drying time of fish fillets. For this purpose, ultrasonic treatment and vacuum-drying were simultaneously performed to dehydrate salmon and trout fillets at 55 °C, 65 °C, and 75 °C. In addition, the USV technique was compared with vacuum-drying and oven-drying techniques. The dehydration kinetics of the fillets was successfully described by seven thin-layer drying models with R2 range between 0.944 and 1.000. Depending on drying temperatures and fish species, the drying times could be shortened using the USV technique between 7.4% and 27.4% compared with vacuum-drying. The highest effective moisture diffusivity was determined in the fillets dried with the USV technique and they increased with increasing drying temperatures. Ultrasonic treatment accelerated the vacuum drying process for the fillets; therefore, this technique could be used to improve the efficiency of vacuum-drying for the fillets.  相似文献   

16.
This paper presents an intensification study of an ozonation process through an ultrasonic pre-treatment for the elimination of humic substances in water and thus, improve the quality of water treatment systems for human consumption. Humic acids were used as representative of natural organic matter in real waters which present low biodegradability and a high potential for trihalomethane formation. Ultrasonic frequency (98 kHz, 300 kHz and 1 MHz), power (10–40 W) and sonicated volume (150–400 mL) was varied to assess the efficiency of the ultrasonic pre-treatment in the subsequent ozonation process. A direct link between hydroxyl radical (HO) formation and fluorescence reduction was observed during sonication pre-treatment, peaking at 300 kHz and maximum power density. Ultrasound, however, did not reduce total organic carbon (TOC). Injected ozone (O3) dose and reaction time were also evaluated during the ozonation treatment. With 300 kHz and 40 W ultrasonic pre-treatment and the subsequent ozonation step (7.4 mg O3/Lgas), TOC was reduced from 21 mg/L to 13.5 mg/L (36% reduction). HO attack seems to be the main degradation mechanism during ozonation. A strong reduction in colour (85%) and SUVA254 (70%) was also measured. Moreover, changes in the chemical structure of the macromolecule were observed that led to the formation of oxidation by-products of lower molecular weight.  相似文献   

17.
Microwave and ultrasound have been demonstrated to be outstanding process intensification techniques for transesterification of oil. According to their mechanisms, simultaneous effects can surely bring about better enhancement than sole microwave or ultrasound. Therefore, this study aimed to investigate the important factors and their suitable levels in the KOH-catalyzed transesterification of soybean oil with methanol by using synergistic assistance of microwave-ultrasound (CAMU). The feasibility of application of CAMU in transesterification of oil was demonstrated. When the dosage of methanol, soybean oil and KOH were 15.4 g, 34.7 g (with methanol-to-oil molar ratio of 12:1) and 1 g, respectively, and the microwave power, ultrasonic power, ultrasonic mode, reaction temperature and reaction time were 700 W, 800 W, 1:0, 65 °C and 6 min, respectively, the transesterification reached 98.0% of yield, being the highest yield among all the results obtained; while by using 600 W of microwave plus stirring instead of CAMU, only 57.4% of yield could be obtained. Compared with other reaction techniques, the transesterification by applying novel CAMU was found to have remarkable advantages. Furthermore, by monitoring the variation of real-time temperature and microwave power during transesterification reactions with different microwave operation time and by taking comparison of the corresponding yield, it was demonstrated that the main reason for the acceleration of microwave-assisted transesterification was the polarization and further activation of reactants caused by microwave irradiation, but not the factor of fast heating.  相似文献   

18.
Comparative studies of lipase-catalyzed hydrolysis of soy oil takes place at the interface between the oil and the aqueous solution in solvent-free system were carried out in shaking bath and in ultrasonic bath. The interfacial area between the oil phase and the aqueous phase influences the rate of hydrolysis. Compared to shaking bath, ultrasonic shaking was found to be a more effective procedure to disperse the oil in water. Larger interfacial area and smaller drop size could be obtained in ultrasonic bath. The initial rate of hydrolysis was increased with the increasing of interfacial area. In ultrasonic bath, the highest initial rate of reaction was obtained with the oil volume fraction of 0.7, which was in accord to the highest interfacial area obtained with the oil volume fraction of 0.7, when the ultrasonic power was 1.64 W/cm2. The higher initial rate of hydrolysis was 161 mol/m3 min. The ultrasonic bath was a useful way to disperse soy oil in water to obtain a larger interfacial area, which caused the higher initial rate of soy oil hydrolysis in the solvent-free system.  相似文献   

19.
The objective of the present study was to assess the effects of ultrasound pretreatment on the quality of dry-cured yak meat. The ultrasonic power with 0, 200, 300 and 400 W (ultrasonic frequency of 20 kHz) were used to assist processing of dry-cured yak meat. The meat quality, nutrient substances, sensory quality, electronic nose, electronic tongue and volatile compounds of dry-cured yak meat were determined. The results indicated that the moisture content and hardness value of ultrasonic treatment group was significantly lower compared to the control group (P < 0.05). Ultrasonic treatment increased the value of b*, and decreased the value of L*, a*, pH, chewiness, melting temperature and enthalpy. Springiness value significantly increased from control group to 300 W of ultrasonic power group. Shear force significantly decreased with the increase of ultrasonic power (P < 0.05). Ultrasonic treatment had no effect on the TVB-N content, but it could increase the TBARS content. Ultrasonic treatment could significantly increase the essential FAA (EFAA) and total FAA (P < 0.05). In addition, the saturated fatty acid (SFA) content significantly increased with the increase of ultrasonic power (P < 0.05). Ultrasound treatment negatively affected the meat’s color, smell, and taste but increased its tenderness and the overall acceptability. It also significantly increased alcohols and aldehydes contents (P < 0.05), which were consistent with the measurement of electronic nose and electronic tongue. The results demonstrated that the the appropriate ultrasonic power assisted in the processing improves quality of dry-cured yak meat, particularly for the power of 300 W.  相似文献   

20.
Coalescence of water droplets in crude oil has been effectively promoted by chemical demulsifiers integrated with ultrasound. Temporary images of water droplets in W/O emulsions were directly monitored using a metallurgical microscope. Water droplets achieved expansion of 118% at 40 min ultrasonic irradiation time under well mixing conditions. However, water droplets in heavy crude oil undergo less aggregation than those in light crude oil, due to resistance of mobility in highly viscous fluid. In the absence of chemical demulsifiers, water droplets enveloped by native surfactants appeared to aggregate arduously because of occurrence of interfacial tension gradients. Influential significance analyses have been executed by a factorial design method on operation variables, including acoustic power intensity, operation temperature, ultrasonic irradiation time and chemical demulsifier dosages. In this work, the outcomes indicate that the optimal operating conditions for desalination of crude oil assisted by ultrasound were as follows: acoustic power intensity = 300 W, operation temperature = 90℃, ultrasonic irradiation time = 75 min and chemical demulsifier dosages = 54 mg/L. Besides, it was found that the most influential importance of operation parameter was temperature, followed with acoustic power intensity, ultrasonic irradiation time and chemical demulsifier dosages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号