首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, we report the fabrication of stable composite of chitosan hydrogels (CHI) on multiwalled carbon nanotubes (MWCNT) using a simple ultrasonic-assisted method. Also, rod-like hydroxyapatite nanoparticles (HA NPs) were synthesised using a hydrothermal route and were incorporated into the highly conductive MWCNT-CHI scaffolds using an ultrasonication method. The functionalization of MWCNT and preparation of HA NPs on MWCNT-CHI nanocomposite were done using the sonication over the frequency of 37 kHz with the ultrasonic power capable of 150 W (Elmasonic Easy 60H bath sonicator). The resulting hybrid HA NPs/MWCNT-CHI nanocomposites have an excellent surface area and high surface to volume ratio, which leads to the sensitive detection of nitrofurantoin than pristine MWCNT and HA NPs. The complete elemental and morphological analyses of the HA NPs/MWCNT-CHI nanocomposites were characterised by XRD, FTIR, RAMAN, FESEM, TEM, EDX, and elemental mapping techniques. Electrochemical analysis of the HA NPs/MWCNT-CHI nanocomposites was carried out by cyclic voltammetry, electrochemical impedance spectroscopy and amperometry methods. The modified glassy carbon electrode (GCE) of HA NPs/MWCNT-CHI nanocomposites exhibit the nitrofurantoin detection activity at the linear range of 0.005–982.1 µM with the detection limit of 1.3 nM. The synergistic electrocatalytic activity of HA NPs/MWCNT-CHI nanocomposites modified GCE is correlated to the sensitivity of 0.16 µAµM−1 cm−2 with excellent precision and accuracy towards the sensing of nitrofurantoin.  相似文献   

2.
The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01–68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm−2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn’t cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.  相似文献   

3.
Thermo-responsive polymer nanocomposite based on poly (styrene-co-N-isopropylacrylamide) hybrid tungsten dioxide (WO2@PS-co-PNIPAM) was synthesized by a facile ultrasonic irradiation (Frequency; 20 kHz, power; 180 W, calorimetrically determined power; 5.73 W in the bath, and Type; probe) method in the presence of water as inisolv. The as-synthesized WO2@PS-co-PNIPAM modified glassy carbon electrode (WO2@PS-co-PNIPAM/GCE) was acting as a reversibly switched detection for the electrooxidation of metoprolol (MTP), with the thermal stimuli response of the PNIPAM. In below lower critical solution temperature (LCST), the PS-co-PNIPAM expanded to embed the electroactive sites of WO2, and the MTP could not proceed via the polymer to attain electronic transfer, indicating the “off” state. Rather, in above LCST, the PS-co-PNIPAM shrank to reveal electroactive sites and expand cyclic voltammetric background peak currents, the MTP was capable to undergo electro-oxidation reaction usually and produce the response current, indicating “on” state. Additionally, the proposed sensor had excellent sensitivity (2.21 µA µM−1 cm−2), wide dynamic range (0.05–306 µM), and a low limit of detection of 0.03 µM for MTP. Intriguingly, the fabricated sensor demonstrates the good selectivity towards the detection of MTP among the possible interfering compounds. Eventually, the WO2@PS-co-PNIPAM/GCE has been utilized in the analysis of MTP in human blood serum samples.  相似文献   

4.
In the present work, we report on the synthesis of crump-like nickel manganous oxide nanoparticles decorated partially reduced graphene oxide (NiMnO@pr-GO) nanocomposite through high-intensity ultrasonic bath sonication (ultrasonic frequency = 37 kHz and power = 150 W). The NiMnO@pr-GO nanocomposite modified glassy carbon electrode (GCE) was then employed for the electrochemical reduction of detrimental metronidazole (MNZ). The crystalline phase and formation of the NiMnO@pr-GO nanocomposites were confirmed by X-ray diffraction and other spectroscopic techniques. The cyclic voltammetry results demonstrate that this NiMnO@pr-GO nanocomposite modified GCE has a lower reduction potential and higher catalytic activity towards MNZ than do NiMnO and GO modified GCEs. Under optimized conditions, the fabricated NiMnO@pr-GO electrode can detect metronidazole over a wide linear range with a lower limit of detection of 90 nM. The sensitivity of the sensor was 1.22 µA µM-1cm−2 and was found to have excellent selectivity and durability for the detection of MNZ.  相似文献   

5.
In this study NiO nanostructures were synthesized via combinational synthetic method (ultrasound-assisted biosynthesis) and immobilized on the glassy carbon electrode (GCE) as a highly sensitive and selective enzyme-less sensor for urea detection. NiO-NPs were fully characterized using SEM, EDX, XRD, BET, TGA, FT-IR, UV–vis and Raman methods which revealed the formation of NiO nanostructures in the form of cotton like porous material and crystalline in nature with the average size of 3.8 nm. GCE was modified with NiO-NPs in aqueous solution of cetrimonium bromide(CTAB). Highly adhesive NiO/CTAB/GO nanocomposite membrane has been formed on GCE by immersing NiO/CTAB modified GCE in GO suspension. CTAB has a major role in the production and immobilization of the nanocomposites on the GCE surface and the binding NiO nanoparticles on GO plates. In addition, CTAB/GO composition made a highly adhesive surface on the GCE. The resulting NiO/CTAB/GO/GCE contains potently sensitive to urea in aqueous environments. The response of as developed amperometric sensor was linear in the range of 100–1200 µM urea with R2 value of 0.991 and limit of detection (LOD), 8 µM. The sensor responded negligibly to various interfering species like glucose, uric acid and ascorbic acid. This sensor was applied successfully for determining urea in real water samples such as mineral water, tap water and river water with acceptable recovery.  相似文献   

6.
In this reports the facile and green synthesis of rutile-type titanium dioxide nanoparticles decorated graphene oxide nanocomposite via the ultrasonication process (frequency: 50 kHz, Power: 100 W/cm2 and Ultrasonic type: Ti-horn). Because, the sonochemical synthesis method is simple, non-explosive and harmless method than other conventional technique. Furthermore, the synthesized material was characterized by various analytical techniques including FESEM, EDX, XRD, EIS and electrochemical methods. Then, the synthesized TiO2 MPs@GOS composite was applied for the electrocatalytic detection of theophylline (TPL) using CV and amperometric (current-time) techniques. Captivatingly, the modified sensor has excellent electrocatalytic performance with the wider linear range from 0.02 to 209.6 µM towards the determination of theophylline and the LOD and sensitivity of the modified sensor was calculated as 13.26 nM and 1.183 μA·µM−1·cm−2, respectively. In addition, a selectivity, reproducibility and stability of the TiO2 MPs@GOS modified GCE were analyzed towards the determination of theophylline molecule. Finally, the real time application of TiO2 MPs@GOS modified theophylline sensor was established in serum and drug samples.  相似文献   

7.
We describe the ultrasonic assisted preparation of barium stannate-graphitic carbon nitride nanocomposite (BSO-gCN) by a simple method and its application in electrochemical detection of 4-nitrophenol via electro-oxidation. A bath type ultrasonic cleaner with ultrasonic power and ultrasonic frequency of 100 W and 50 Hz, respectively, was used for the synthesis of BSO-gCN nanocomposite material. The prepared BSO-gCN nanocomposite was characterized by employing several spectroscopic and microscopic techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red, field emission scanning electron microscopy, and high resolution transmission electron microscopy, to unravel the structural and electronic features of the prepared nanocomposite. The BSO-gCN was drop-casted on a pre-treated glassy carbon electrode (GCE), and their sensor electrode was utilized for electrochemical sensing of 4-nitrophenol (4-NP). The BSO-gCN modified GCE exhibited better electrochemical sensing behavior than the bare GCE and other investigated electrodes. The electroanalytical parameters such as charge transfer coefficient (α = 0.5), the rate constant for electron transfer (ks = 1.16 s−1) and number of electron transferred were calculated. Linear sweep voltammetry (LSV) exhibited increase in peak current linearly with 4-NP concentration in the range between 1.6 and 50 μM. The lowest detection limit (LoD) was calculated to be 1 μM and sensitivity of 0.81 μA μM−1 cm−2. A 100-fold excess of various ions, such as Ca2+, Na+, K+, Cl, I, CO32−, NO3, NH4+ and SO42− did not able to interfere with the determination of 4-NP and high sensitivity for detecting 4-NP in real samples was achieved. This newly developed BSO-gCN could be a potential candidate for electrochemical sensor applications.  相似文献   

8.
In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015–1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 μA μM−1 cm−2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.  相似文献   

9.
To acquire substantial electrochemical signals of guanine-GUA and adenine-ADE present in deoxyribonucleic acid-DNA, it is critical to investigate innovative electrode materials and their interfaces. In this study, gold-loaded boron-doped graphene quantum dots (Au@B-GQDs) interface was prepared via ultrasound-aided reduction method for monitoring GUA and ADE electrochemically. Transmission electron microscopy-TEM, Ultraviolet–Visible spectroscopy-UV–Vis, Raman spectroscopy, X-ray photoelectron spectroscopy-XPS, cyclic voltammetry-CV, and differential pulse voltammetry-DPV were used to examine the microstructure of the fabricated interface and demonstrate its electrochemical characteristics. The sensor was constructed by depositing the as-prepared Au@B-GQDs as a thin layer on a glassy carbon-GC electrode by the drop-casting method and carried out the electrochemical studies. The resulting sensor exhibited a good response with a wide linear range (GUA = 0.5–20 μM, ADE = 0.1–20 μM), a low detection limit-LOD (GUA = 1.71 μM, ADE = 1.84 μM), excellent sensitivity (GUA = 0.0820 µAµM−1, ADE = 0.1561 µAµM−1) and selectivity with common interferents results from biological matrixes. Furthermore, it seems to have prominent selectivity, reproducibility, repeatability, and long-lasting stability. The results demonstrate that the fabricated Au@B-GQDs/GC electrode is a simple and effective sensing platform for detecting GUA and ADE in neutral media at low potential as it exhibited prominent synergistic impact and outstanding electrocatalytic activity corresponding to individual AuNPs and B-GQDs modified electrodes.  相似文献   

10.
Herein, we have synthesized zinc sulfide nanospheres (ZnS NPs) encapsulated on reduced graphene oxide (RGO) hybrid by an ultrasonic bath (50 kHz/60 W). The physical and structural properties of ZnS NPs@RGO hybrid were analyzed by TEM, XRD, EIS and EDS. As-prepared ZnS NPs@RGO hybrid was applied towards the electrochemical determination of caffeic acid (CA) in various food samples. The ZnS NPs@RGO hybrid modified electrode (GCE) exhibited an excellent electrocatalytic performance towards caffeic acid detection and determination, when compared to other modified electrodes. Therefore, the electrochemical sensing performance of the fabricated and nanocomposite modified electrode was significantly improved owing to the synergistic effect of ZnS NPs and RGO catalyst. Furthermore, the hybrid materials provide highly active electro-sites as well as rapid electron transport pathways. The proposed electrochemical caffeic acid sensor produces a wide linear range of 0.015–671.7 µM with a nanomolar level detection limit (3.29 nM). In addition, the real sample analysis of the proposed sensor has applied to the determination of caffeic acid in various food samples.  相似文献   

11.
A novel sensitive electrochemical sensor has been developed by modification of glassy carbon electrode (GCE) with graphene (GRP), chitosan (CHIT), and bismuth oxide (Bi2O3) nanoparticles. The morphological characteristics of nanocomposite (GRP-CHIT-Bi2O3 or GCB) were studied by scanning electron microscope and atomic force microscopy. The electrochemical behavior of epinephrine at nanocomposite modified GCE (GCB/GCE) was investigated in pH 7.4 phosphate buffer solution using cyclic voltammetry and square wave voltammetry. GCB/GCE showed an enhancement in the current response as compared to bare GCE. Electrochemical impedance spectra showed a reduction of charge transfer resistance and higher electrocatalytic behavior of the sensor. The electrooxidation process of epinephrine at the modified sensor was found to be diffusion controlled. GCB/GCE showed a linear response to epinephrine in the range 100 to 500 nM. The limit of detection and limit of quantification were found to be 3.56 and 11.85 nM, respectively, which is lower than many other sensors reported for epinephrine in literature. The modified sensor showed high sensitivity (1.3 nA/nM) and selectivity for epinephrine. The method was employed for quantification of epinephrine in pharmaceutical formulation and human blood serum samples.  相似文献   

12.
Design and fabrication of novel inorganic nanomaterials for the low-level detection of food preservative chemicals significant is of interest to the researchers. In the present work, we have developed a novel grass-like vanadium disulfide (GL-VS2) through a simple sonochemical method without surfactants or templates. As-prepared VS2 was used as an electrocatalyst for reduction of hydrogen peroxide (H2O2). The crystalline nature, surface morphology, elemental compositions and binding energy of the as-prepared VS2 were analyzed by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The electrochemical studies show that the GL-VS2 modified glassy carbon electrode (GL-VS2/GCE) has a superior electrocatalytic activity and lower-reduction potential than the response observed for unmodified GCE. Furthermore, the GL-VS2/GCE displayed a wide linear response range (0.1–260 μM), high sensitivity (0.23 μA μM−1 cm−2), lower detection limit (26 nM) and excellent selectivity for detection of H2O2. The fabricated GL-VS2/GCE showed excellent practical ability for detection of H2O2 in milk and urine samples, revealing the real-time practical applicability of the sensor in food contaminants.  相似文献   

13.
A nanostructured and high conductive cupric oxide (CuO NPs) with hierarchical CeO2 sheets-like structure was synthesized by a facile sonochemical approach. Furthermore, CuO/CeO2 nanostructure is synthesized by high-intensity ultrasonic probe (Ti-horn, 50 kHz and 100 W) at ambient air. Moreover, the synthesized CuO/CeO2 material was characterized by various analytical techniques including FESEM, EDX, XRD and electrochemical methods. Then, the synthesized CuO/CeO2 composite was applied for the electrocatalytic detection of dopamine using CV and DPV techniques. In addition, the CuO/CeO2 modified electrode has good electrocatalytic performance with high linear range from 0.025 to 98.5 µM towards the determination of dopamine drug and high sensitivity of the CuO/CeO2 modified drug sensor was calculated as 16.34 nM and 4.823 μA·µM−1·cm−2, respectively. Moreover, a repeatability, reproducibility and stability of the CuO@CeO2 mixture modified electrode were analyzed towards the determination of dopamine biomolecule. Interestingly, the real time application of CuO@CeO2 modified electrode was established in different serum and drug samples.  相似文献   

14.
Gold nanoparticles (AuNPs)–polyvinylpyrrolidone (PVP)–graphene (Gr) nanohybrids were prepared by a facile one-pot green strategy. The obtained Au–PVP–Gr composites were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Then, a novel electrochemical sensor for highly sensitive and selective detection of tert-butylhydroquinone (TBHQ) is proposed based on cetyltrimethyl-ammonium bromide (CTAB) and Au–PVP–Gr modified glassy carbon electrode (GCE). Due to the synergistic effect of CTAB and Au–PVP–Gr, the developed sensor displays a wide linear range from 0.02 to 0.1 and 0.1 to 100.0 μM. A low detection limit of 0.009 μM was observed. Further, the sensitivity and selectivity of PVP–CTAB/Au–PVP–Gr/GCE was demonstrated by its practical application in the determination of TBHQ in real samples.  相似文献   

15.
The ultrasound-assisted synthesis of a novel neodymium sesquioxide nanoparticles (Nd2O5 NPs) decorated graphene oxide (GO) nanocomposite under ultrasonic probe (Ultrasonic processor model-PR 1000; frequency-30 kHz; power of 100 W/cm2) has been reported. After then, SEM, TEM, XRD, EDX and electrochemical impedance spectroscopy characterized was analyzed using Nd2O5 NPs@GO nanomaterial. Furthermore, the nanomaterial modified GCE (glassy carbon electrode) shows excellent electrochemical sensing performance towards anti-cancer drug. Raloxifene is one of the important anti-cancer drug. Moreover, the fabricated electrochemical sensor has showed a wide linear range for raloxifene between 0.03 and 472.5 µM and nanomolar detection limit (18.43 nM). In addition, the Nd2O5 NPs@GO modified sensor has been applied to the determination of raloxifene in human blood and urine samples.  相似文献   

16.
A sonochemical based green synthesis method playa powerful role in nanomaterials and composite development. In this work, we developed a perovskite type of strontium titanate via sonochemical process. SrTiO3 particles were incorporated with nitrogen doped graphene oxide through simple ultrasonic irradiation method. The SrTiO3/NGO was characterized by various analytical methods. The nanocomposite of SrTiO3/NGO was modified with laser-induced graphene electrode (LIGE). The SrTiO3/NGO/LIGE was applied for electrochemical sensor towards chemotherapeutic drug detection (nilutamide). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to examine the electrochemical performance of nilutamide (anti-cancer drug). DPV was found to be more sensitive and found to exhibit a sensitivity 8.627 µA µM−1 cm−2 for SrTiO3/NGO/LIGE with a wide linear range (0.02–892 µM) and low Limit of detection (LOD: 1.16 µM). SrTiO3/NGO/LIGE has been examined for the detection of nilutamide in blood serum and urine samples and obtained a good recovery in the range of 97.2–99.72 %. The enhanced stability and selectivity and practical application results indicates the suitability of SrTiO3/NGO/LIGE towards the detection of nilutamide drug in pharmaceutical industries.  相似文献   

17.
Glutathione (GSH) is the most abundant antioxidant in the majority of cells and tissues; and its use as a biomarker has been known for decades. In this study, a facile electrochemical method was developed for glutathione sensing using voltammetry and amperometry analyses. In this study, a novel glassy carbon electrode composed of graphene quantum dots (GQDs) embedded on amine-functionalized silica nanoparticles (SiNPs) was synthesized. GQDs embedded on amine-functionalized SiNPs were physical-chemically characterized by different techniques that included high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction spectroscopy (XRD), UV–visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy. The newly developed electrode exhibits a good response to glutathione with a wide linear range (0.5–7 µM) and a low detection limit (0.5 µM) with high sensitivity(2.64 µA µM−1). The fabricated GQDs-SiNPs/GC electrode shows highly attractive electrocatalytic activity towards glutathione detection in the neutral media at low potential due to a synergistic surface effect caused by the incorporation of GQDs over SiNPs. It leads to higher surface area and conductivity, improving electron transfer and promoting redox reactions. Besides, it provides outstanding selectivity, reproducibility, long-term stability, and can be used in the presence of interferences typically found in real sample analysis.  相似文献   

18.
In this study, an electrocatalyst based on 2-thiolbenzimidazole (TBI) functionalized reduced graphene oxide (rGO) with platinum and palladium nanoparticles (Pt-PdNPs) was synthesized. The successful synthesis of nanomaterials and the prepared glassy carbon electrode (GCE) surfaces were confirmed by transmission electron microscope, X-ray photo electron spectroscopy, scanning electron microscope, electrochemical impedance spectroscopy and X-ray diffraction method. The effective surface areas of TBIrGO/GCE, PdNPs/TBIrGO/GCE, PtNPs/TBIrGO/GCE and Pt-PdNPs/TBIrGO/GCE were calculated to be 324, 578, 667 and 1189 cm2/mg, respectively. According to the results, the electrochemical surface area of the Pt-PdNPs/TBIrGO is 3.67, 2.06 and 1.78 times higher than those of TBIrGO, PdNPs/TBIrGO and PtNPs/TBIrGO, respectively. The Pt-PdNPs/TBIrGO/GCE also exhibited higher peak current for methanol oxidation than those of comparable TBIrGO/GCE, PdNPs/TBIrGO/GCE, PtNPs/TBIrGO/GCE modified GCEs, thus providing evidence for its higher electro-catalytic activity.  相似文献   

19.
A novel and convenient electrochemical sensor, based on multi-walled carbon nanotube (MWCNT)–poly-melamine(PMel)–silver nanoparticle (AgNP) composite-modified glassy carbon electrode (GCE), was fabricated for the determination of nitrobenzene (NB). The modified electrode not only played an efficient electrocatalytic role for the reduction of NB but also significantly reduced the overpotential of NB, and the peak current increased greatly compared with bare GCE or other modified electrodes. The excellent performance of NB sensor can be ascribed to the synergistic effect between MWCNT and AgNP. The synergistic effect promoted the electron transfer between MWCNT and AgNP significantly and enhanced the electrochemical reduction ability of NB remarkably. Besides, PMel has huge nitrogen and amine groups, which contributes to the dispersion of silver nanoparticles and also improves the electrocatalytic activity and sensitivity of the sensor. The integration of PMel/MWCNT with AgNP provided a high-performance platform for the NB determination. Under the optimized experimental conditions, the developed sensor showed a wide linear calibration ranges from 20 to 1000 μM and from 1000 to 6000 μM, with a low detection limit (0.55 μM) for the detection of NB. At the same time, the modified electrode exhibited good stability and reproducibility and acceptable selectivity. Moreover, the proposed sensors were successfully employed to determine NB in real samples, and the recoveries were between 97.2 and 104.6 %.  相似文献   

20.
The binary nanomaterials and graphitic carbon based hybrid has been developed as an important porous nanomaterial for fabricating electrode with applications in non-enzymatic (bio) sensors. We report a fast synthesis of bimetal oxide particles of nano-sized manganese ferrite (MnFe2O4) decorated on graphitic carbon nitride (GCN) via a high-intensity ultrasonic irradiation method for C (30 kHz and 70 W/cm2). The nanocomposites were analyzed by powder X-ray diffraction, XPS, EDS, TEM to ascertain the effects of synthesis parameters on structure, and morphology. The MnFe2O4/GCN modified electrode demonstrated superior electrocatalytic activity toward the neurotransmitter (5-hydroxytryptamine) detection with a high peak intensity at +0.21 V. The appealing application of the MnFe2O4/GCN/GCE as neurotransmitter sensors is presented and a possible sensing mechanism is analyzed. The constructed electrochemical sensor for the detection of 5-hydroxytryptamine (STN) showed a wide working range (0.1–522.6 μM), high sensitivity (19.377 μA μM−1 cm−2), and nano-molar detection limit (3.1 nM). Moreover, it is worth noting that the MnFe2O4/GCN not only enhanced activity and also promoted the electron transfer rate towards STN detection. The proposed sensor was analyzed for its real-time applications to the detection of STN in rat brain serum, and human blood serum in good satisfactory results was obtained. The results showed promising reproducibility, repeatability, and high stability for neurotransmitter detection in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号