首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Uniformly distributed PbTiO3 nanodots were successfully prepared by phase separation approach. A precursor sol film was first spin-coated on Si wafer and then spontaneously separated into two distinct phases owing to the Marangoni instability. PT nanodots with tailorable size and density were obtained after further heat treatment. X-ray diffraction analysis indicated that these nanodots showed a perovskite structure. An excellent room temperature field emission property of PbTiO3 nanodots was observed: the minimum turn-on voltage was about 5.3 V/μm; while the emission current density reached about 270 μA cm−2 at an applied field of about 9.25 V/μm.  相似文献   

2.
The effect of hydrogen (H2) gas exposure on the field emission properties of tin oxide (SnO2) nanowires films synthesized by the carbon thermal reduction vapor transport method was investigated. The exposure of H2 gas results in the reduction of the turn-on voltage for driving a current of 10 nA from 7.6 V/μm to 5.5 V/μm and the increase of the field current based on 10 V/μm from 0.47 μA to 2.1 μA. The Fowler–Nordheim plot obtained from the current–voltage data supports that the field emission enhancement of SNW film is attributed to the reduction of the work function by the H2 exposure.  相似文献   

3.
Zinc oxide (ZnO) nano/microfibrous thin films were successfully synthesized by a catalyst free solution route on glass and Si substrates. X-ray diffraction study revealed the formation of ZnO nanofibers of hexagonal crystalline structure. The texture coefficient of different planes varied with annealing temperature and that of the (0 0 2) plane was the highest for films annealed at temperature 873 K. Scanning electron micrograph showed the well formation of ZnO nano/microfibers with an average diameter 500 nm and having an average aspect ratio 150. UV–Vis–NIR spectroscopic study for the films deposited on glass substrates showed the high transmittance in the visible and near-infrared region. It was also observed that the band gap energy decreased as the films were annealed at higher temperature. The band gap energies of nanostructured ZnO thin films were determined to be in the range 3.03–3.61 eV. The photoluminescence study showed an UV emission peak at 397 nm, a visible blue–green emission peak at 468 nm and a green emission peak at 495 nm. Field emission properties of nanofiber ZnO thin film showed considerably low turn-on field around 1.4 V/μm. The emission current was as high as 70 μA at the field of 3.6 V/μm.  相似文献   

4.
A simple and self-catalytic method has been developed for synthesizing finely patterned ZnO nanorods on ITO-glass substrates under a low temperature of 500 °C. The patterned ZnO nanorod arrays, a unit area is of 400 × 100 μm2, are synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized ZnO nanorods are characterized by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism of formation of ZnO nanorods is also discussed. The measurement of field emission (FE) reveals that the as-synthesized ZnO nanorods arrays have a turn-on field of 3.3 V/μm at the current density of 0.1 μA/cm2 and a low threshold field of 6.2 V/μm at the current density of 1 mA/cm2. So this approach must have a potential application of fabricating micropatterned oxide thin films used in FE-based flat panel displays.  相似文献   

5.
ZnO nanoinjectors were synthesized on Au-coated Si substrate by direct thermal evaporation of zinc powder at a low temperature of 600 °C and atmospheric pressure. Field-emission scanning electron microscopy and X-ray diffraction were applied to study the structural characteristics of the sample. The result indicated that the nanoinjector sample consisted of single-crystalline wurtzite structures which were preferentially oriented in the 0 0 1 direction. The field emission of the sample started at a turn-on field of 1.5 V/μm at a current density of 1 μA/cm2, while the emission current density reached about 1 mA/cm2 at an applied field of 5.0 V/μm.  相似文献   

6.
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 °C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3–10 μm. Raman spectra show two strong peaks about 1332 cm−1 and 1598 cm−1, indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/μm, no evident decay at 3.4 mA/cm2 in 480 min.  相似文献   

7.
The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10−1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ∼600 nm.  相似文献   

8.
Carbon films were prepared on single crystal silicon substrates by heat-treatment of a polymer-poly(phenylcarbyne) at 800 °C in Ar atmosphere. The heat-treatment caused the change of the polymer into carbon film, which exhibited good field emission properties. Low turn-on emission field of 4.3 V/μm (at 0.1 μA/cm2) and high emission current density of 250 μA/cm2 (at 10 V/μm) were observed for the polymer-converted carbon films. This behavior was demonstrated to be mainly related to the microstructure of the carbon films, which consisted of fine carbon nanoparticles with high sp2 bonding. The carbon films, which can be deposited simply with large areas, are promising for practical applications in field emission display.  相似文献   

9.
Nano-sheet carbon films (NSCFs) coated with very thin (≈5-nm-thick) metal layers were fabricated on Si wafer chips by means of quartz-tube-type microwave-plasma chemical-vapour-deposition method with hydrogen-methane gas mixture and an electron beam evaporation method. Field emission (FE) current densities obtained at a macroscopic average electric field, E, of ≈10 V/μm changed from 13 mA/cm2 for NSCF with no coated metal to 1.7, 0.7 and 30 mA/cm2 for Ti-, Al- and Au-coated NSCFs, respectively, while the threshold E varied from 4.4 V/μm for the former one to 5.3, 5.4 and 2.0 V/μm for the corresponding latter ones, respectively. As the FE currents of Au-coated NSCFs tended to be saturated in a higher E region, compared to those of NSCFs with no coated metal, no simple Fowler-Nordheim (F-N) model is applicable. A modified F-N model considering statistic effects of the FE tip structures and a space-charge-limited-current effect is successfully applied to an explanation for the FE data observed in the low and high E regions.  相似文献   

10.
Aligned CNx nanotubes were fabricated by pyrolyzing ethylenediamine on p-type Si(1 1 1) substrates using iron as the catalyst. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrum (XPS) and Raman spectroscopy were used to characterize the CNx nanotubes. The CNx nanotubes with the average length of 20 μm and diameters in the range of 50–100 nm have the “bamboo-like” structure and worse crystalline order. The low-field emission measurements of the CNx nanotubes indicated that 20 μA/cm2 current densities were observed at an electric field of 1.4 V/μm and 1.280 mA/cm2 were obtained at 2.54 V/μm. The CNx nanotubes exhibit better field emission properties than the carbon nanotubes and the BCN nanotubes. The emission mechanism of CNx nanotubes is also discussed.  相似文献   

11.
Amorphous gallium nitride (a-GaN) films have been deposited on Si (100) substrates using ion-assisted deposition. The deposited films were characterised by X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD confirms the amorphous nature of the films and AFM showed nanostructures in the films. The field electron emission from the film was obtained in a probe-hole field emission microscope, and the current-voltage (I-V) characteristics were studied. The corresponding Fowler-Nordheim (F-N) plots showed a linear behaviour. A current density of 0.1 A/cm2 has been obtained for 1.2 V/μm electric field. The field emission current-time (I-t), curves were recorded at a current level of 500 nA for 3 h. The field emission behaviour is compared with that of crystalline GaN as reported in literature.  相似文献   

12.
Well-oriented Cu2O films comprising of octahedral-shaped crystals were grown directly on copper foil via an hydrothermal treatment. The well-oriented films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Field emission from the film showed good emission properties, and, the electron emission turn-on field (Eto) and threshold field (Ethr) are about 9.6 and 13.4 V/μm respectively, which is similar to the values reported for CuO nanofiber, although the latter has a much larger size. The corresponding Fowler-Nordheim (F-N) plots showed a linear behavior. The sharp corners of the tips are considered as main electron emitters and account for its good performance.  相似文献   

13.
Diamond nanocone, graphitic nanocone, and mixed diamond and graphitic nanocone films have been synthesized through plasma enhanced hot filament chemical vapor deposition (HFCVD). The field emission properties of these films have been experimentally investigated. The studies have revealed that all three kinds of nanocone films have excellent field electron emission (FEE) properties including low turn-on electric field and large emission current at low electric field. Compared with the diamond nanocone films (emission current of 86 μA at 26 V/μm with the turn-on field of 10 V/μm), the graphitic nanocone films exhibit higher FEE current of 1.8×102 μA at 13 V/μm and a lower turn-on filed of 4 V/μm. The mixed diamond and graphitic nanocone films have been found to posses FEE properties similar to graphitic nanocone films (emission current of 1.7×102 μA at 20 V/μm with the turn-on field of 5 V/μm), but have much better FEE stability than the graphitic nanocone films. PACS 81.07.Bc; 81.05.Uw; 79.70.+q  相似文献   

14.
A comprehensive comparative study of electron field emission properties of carbon nanotube (CNT) films prepared by vacuum filtration and screen-printing was carried out. Field emission performance of vacuum filtered CNT films with different filtered CNT suspension volumes was systematically studied, and the optimum electron emission was obtained with a low turn on field of ∼0.93 V/μm (at 1 μA/cm2) and a high field enhancement factor β of ∼9720. Comparing with screen-printed CNT films, vacuum filtered CNT films showed better electron emission performance, longer lifetime, and greater adhesive strength to substrates. This work reveals a potential use of vacuum filtered CNT films as field emission cathodes.  相似文献   

15.
Field emission studies of a bunch and a single isolated RuO2:SnO2 wire have been performed. A current density of 5.73 × 104 A/cm2 is drawn from the single wire emitter at an applied field of 8.46 × 104 V/μm. Nonlinearity in the Fowler-Nordheim (F-N) plot has been observed and explained on the basis of electron emission from both the conduction and the valence bands of the semiconductor. The current stability recorded at the preset value of 1.5 μA is observed to be good. Overall the high emission current density, good stability and mechanically robust nature of the RuO2:SnO2 wires offer advantages as field emitters for many potential applications.  相似文献   

16.
《Applied Surface Science》2005,239(3-4):432-436
Boron nitride (BN) nanometer thin films are synthesized on Si (1 0 0) substrates by RF reactive magnetron sputtering. Then the film surfaces are treated in the case of the base pressure below 5 × 10−4 Pa and the temperature of 800 and 1000 °C, respectively. And the films are studied by Fourier transform infrared spectra (FTIR), atomic force microscopic (AFM) and field emission characteristics at different annealing temperature. The results show that the surface heat treatment makes no apparent influence on the surface morphology of the BN films. The transformations of the sample emission characteristics have to do with the surface negative electron affinity (NEA) of the films possibly. The threshold electric fields are lower for BN samples without heat-treating than the treated films, which possibly ascribed to the surface negative electron affinity effect. A threshold field of 8 V/μm and the emission current of 80 μA are obtained. The surface NEA is still presence at the heat treatment temperature of 800 °C and disappeared at temperature of 1000 °C.  相似文献   

17.
Field emission in diamond and graphite-like polycrystalline films is investigated experimentally. It is shown that the emission efficiency increases as the nondiamond carbon phase increases; for graphite-like films the threshold electric field is less than 1.5 V/μm, and at 4 V/μm the emission current reaches 1 mA/cm2, while the density of emission centers exceeds 106 cm−2. A general mechanism explaining the phenomenon of electron field emission from materials containing graphite-like carbon is proposed. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 1, 56–60 (10 July 1998)  相似文献   

18.
顾广瑞  伊藤利道 《中国物理 B》2009,18(10):4547-4551
This paper reports that the nano-sheet carbon films (NSCFs) were fabricated on Si wafer chips with hydrogen--methane gas mixture by means of quartz-tube-type microwave plasma chemical vapour deposition (MWPCVD). In order to further improve the field emission (FE) characteristics, a 5-nm Au film was prepared on the samples by using electron beam evaporation. The FE properties were obviously improved due to depositing Au thin film on NSCFs. The FE current density at a macroscopic electric field, E, of 9~V/μ m was increased from 12.4~mA/cm2 to 27.2~mA/cm2 and the threshold field was decreased from 2.6~V/μ m to 2.0~V/μ m for Au-coated carbon films. A modified F-N model considering statistic effects of FE tip structures in the low E region and a space-charge-limited-current effect in the high E region were applied successfully to explain the FE data of the Au-coated NSCF.  相似文献   

19.
利用KrF准分子激光退火超薄非晶硅膜,并结合热退火技术制备了单层纳米硅薄膜并研究了薄膜的场电子发射性质.在晶化形成的纳米硅薄膜中可以观测到稳定的场电子发射现象,其开启电场从原始淀积的非晶硅薄膜的17V/μm降低到8.5V/μm,而场发射电流密度可以达到0.1mA/cm2.激光晶化后形成的纳米硅材料的场电子发射特性的改善可以从薄膜表面形貌的改变以及高密度纳米硅的形成所导致的内部电场增强作用来解释. 关键词: 纳米硅 场发射 激光晶化  相似文献   

20.
Field emission behavior of diamond-like carbon (DLC) and phosphorus-doped DLC (p-DLC) films prepared by electrochemical deposition process was comparatively investigated. It was shown phosphorus incorporation in the DLC film could lower the turn on field from 12 to 9.5 V/μm and increase the current density from 12.6 to 45.7 μA/mm2 under high electric field. And better field emission performance of p-DLC films would be mainly attributed to the influence of the surface morphology and the changes of microstructure due to the phosphorus incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号