首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them θ-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing θ-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract θ-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein–Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as θ-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein–Gordon and Dirac equations in the noncommutative field theories. The θ-modified action of the relativistic spinning particle is just a generalization of the Berezin–Marinov pseudoclassical action for the noncommutative case.  相似文献   

2.
Let X be a general cyclic cover of \mathbbCP1{\mathbb{CP}^{1}} ramified at m points, λ1... λ m . we define a class of non-positive divisors on X of degree g −1 supported in the pre images of the branch points on X, such that the Riemann theta function does not vanish on their image in J(X). We generalize the results of Bershadsky and Radul (Commun Math Phys 116:689–700, 1988), Nakayashiki (Publ Res Inst Math Sci 33(6):987–1015, 1997) and Enolskii and Grava (Lett Math Phys 76(2–3):187–214, 2006) and prove that up to a certain determinant of the non-standard periods of X, the value of the Riemann theta function at these divisors raised to a high enough power is a polynomial in the branch point of the curve X. Our approach is based on a refinement of Accola’s results for 3 cyclic sheeted cover (Accola, in Trans Am Math Soc 283:423–449, 1984) and a generalization of Nakayashiki’s approach explained in Nakayashiki (Publ Res Inst Math Sci 33(6):987–1015, 1997) for general cyclic covers.  相似文献   

3.
 Gauge fields in exotic representations of the Lorentz group in D dimensions – i.e. ones which are tensors of mixed symmetry corresponding to Young tableaux with arbitrary numbers of rows and columns – naturally arise through massive string modes and in dualising gravity and other theories in higher dimensions. We generalise the formalism of differential forms to allow the discussion of arbitrary gauge fields. We present the gauge symmetries, field strengths, field equations and actions for the free theory, and construct the various dual theories. In particular, we discuss linearised gravity in arbitrary dimensions, and its two dual forms. Received: 9 September 2002 / Accepted: 22 October 2002 Published online: 21 February 2003 Communicated by A. Connes  相似文献   

4.
Einstein field equations are considered in zero-curvature Robertson–Walker (R–W) cosmology with perfect fluid source and time-dependent gravitational and cosmological “constants.” Exact solutions of the field equations are obtained by using the ’gamma-law' equation of state p = (γ − 1)ρ in which γ varies continuously with cosmological time. The functional form of γ (R) is used to analyze a wide range of cosmological solutions at early universe for two phases in cosmic history: inflationary phase and Radiation-dominated phase. The corresponding physical interpretations of the cosmological solutions are also discussed.  相似文献   

5.
The main goal of this paper is to get in a straightforward form the field equations in metric f (R) gravity, using elementary variational principles and adding a boundary term in the action, instead of the usual treatment in an equivalent scalar–tensor approach. We start with a brief review of the Einstein–Hilbert action, together with the Gibbons–York–Hawking boundary term, which is mentioned in some literature, but is generally missing. Next we present in detail the field equations in metric f (R) gravity, including the discussion about boundaries, and we compare with the Gibbons–York–Hawking term in General Relativity. We notice that this boundary term is necessary in order to have a well defined extremal action principle under metric variation.  相似文献   

6.
We review the non-anticommutative Q-deformations of = (1, 1) supersymmetric theories in four-dimensional Euclidean harmonic superspace. These deformations preserve chirality and harmonic Grassmann analyticity. The associated field theories arise as a low-energy limit of string theory in specific backgrounds and generalize the Moyal-deformed supersymmetric field theories. A characteristic feature of the Q-deformed theories is the half-breaking of supersymmetry in the chiral sector of the Euclidean superspace. Our main focus is on the chiral singlet Q-deformation, which is distinguished by preserving the SO(4) ∼ Spin(4) “Lorentz” symmetry and the SU(2) R-symmetry. We present the superfield and component structures of the deformed = (1, 0) supersymmetric gauge theory as well as of hypermultiplets coupled to a gauge superfield: invariant actions, deformed transformation rules, and so on. We discuss quantum aspects of these models and prove their renormalizability in the Abelian case. For the charged hypermultiplet in an Abelian gauge superfield background we construct the deformed holomorphic effective action. The text was submitted by the authors in English.  相似文献   

7.
We study the gravitational collapse of a star with barotropic equation of state p = wρ in the context of f(R){f({\mathcal R})} theories of gravity. Utilizing the metric formalism, we rewrite the field equations as those of Brans-Dicke theory with vanishing coupling parameter. By choosing the functionality of Ricci scalar as f(R)=aRm{f({\mathcal R})=\alpha{\mathcal R}^{m}} , we show that for an appropriate initial value of the energy density, if α and m satisfy certain conditions, the resulting singularity would be naked, violating the cosmic censorship conjecture. These conditions are the ratio of the mass function to the area radius of the collapsing ball, negativity of the effective pressure, and the time behavior of the Kretschmann scalar. Also, as long as parameter α obeys certain conditions, the satisfaction of the weak energy condition is guaranteed by the collapsing configuration.  相似文献   

8.
We follow the approach of induced-matter theory for a five-dimensional (5D) vacuum Brans–Dicke theory and introduce induced-matter and induced potential in four dimensional (4D) hypersurfaces, and then employ a generalized FRW type solution. We confine ourselves to the scalar field and scale factors be functions of the cosmic time. This makes the induced potential, by its definition, vanishes, but the model is capable to expose variety of states for the universe. In general situations, in which the scale factor of the fifth dimension and scalar field are not constants, the 5D equations, for any kind of geometry, admit a power–law relation between the scalar field and scale factor of the fifth dimension. Hence, the procedure exhibits that 5D vacuum FRW-like equations are equivalent, in general, to the corresponding 4D vacuum ones with the same spatial scale factor but a new scalar field and a new coupling constant, [(w)\tilde]{\tilde{\omega}} . We show that the 5D vacuum FRW-like equations, or its equivalent 4D vacuum ones, admit accelerated solutions. For a constant scalar field, the equations reduce to the usual FRW equations with a typical radiation dominated universe. For this situation, we obtain dynamics of scale factors of the ordinary and extra dimensions for any kind of geometry without any priori assumption among them. For non-constant scalar fields and spatially flat geometries, solutions are found to be in the form of power–law and exponential ones. We also employ the weak energy condition for the induced-matter, that gives two constraints with negative or positive pressures. All types of solutions fulfill the weak energy condition in different ranges. The power–law solutions with either negative or positive pressures admit both decelerating and accelerating ones. Some solutions accept a shrinking extra dimension. By considering non-ghost scalar fields and appealing the recent observational measurements, the solutions are more restricted. We illustrate that the accelerating power–law solutions, which satisfy the weak energy condition and have non-ghost scalar fields, are compatible with the recent observations in ranges −4/3 < ω ≤ −1.3151 for the coupling constant and 1.5208 ≤ n < 1.9583 for dependence of the fifth dimension scale factor with the usual scale factor. These ranges also fulfill the condition ${\tilde{\omega} > -3/2}${\tilde{\omega} > -3/2} which prevents ghost scalar fields in the equivalent 4D vacuum Brans–Dicke equations. The results are presented in a few tables and figures.  相似文献   

9.
We develop the necessary tools, including a notion of logarithmic derivative for curves in homogeneous spaces, for deriving a general class of equations including Euler–Poincaré equations on Lie groups and homogeneous spaces. Orbit invariants play an important role in this context and we use these invariants to prove global existence and uniqueness results for a class of PDE. This class includes Euler–Poincaré equations that have not yet been considered in the literature as well as integrable equations like Camassa–Holm, Degasperis–Procesi, μCH and μDP equations, and the geodesic equations with respect to right-invariant Sobolev metrics on the group of diffeomorphisms of the circle.  相似文献   

10.
We consider for j=?, … a spherically symmetric, static system of (2j+1) Dirac particles, each having total angular momentum j. The Dirac particles interact via a classical gravitational and electromagnetic field. The Einstein–Dirac–Maxwell equations for this system are derived. It is shown that, under weak regularity conditions on the form of the horizon, the only black hole solutions of the EDM equations are the Reissner–Nordstr?m solutions. In other words, the spinors must vanish identically. Applied to the gravitational collapse of a “cloud” of spin-?-particles to a black hole, our result indicates that the Dirac particles must eventually disappear inside the event horizon. Received: 2 November 1998 / Accepted: 23 February 1999  相似文献   

11.
Warped convolutions of operators were recently introduced in the algebraic framework of quantum physics as a new constructive tool. It is shown here that these convolutions provide isometric representations of Rieffel’s strict deformations of C *–dynamical systems with automorphic actions of \mathbb Rn{\mathbb R^n} , whenever the latter are presented in a covariant representation. Moreover, the device can be used for the deformation of relativistic quantum field theories by adjusting the convolutions to the geometry of Minkowski space. The resulting deformed theories still comply with pertinent physical principles and their Tomita–Takesaki modular data coincide with those of the undeformed theory; but they are in general inequivalent to the undeformed theory and exhibit different physical interpretations.  相似文献   

12.
We have made an attempt to develop the quaternionic formulation of Yang–Mill’s field equations and octonion reformulation of quantum chromo dynamics (QCD). Starting with the Lagrangian density, we have discussed the field equations of SU(2) and SU(3) gauge fields for both cases of global and local gauge symmetries. It has been shown that the three quaternion units explain the structure of Yang–Mill’s field while the seven octonion units provide the consistent structure of SU(3) C gauge symmetry of quantum chromo dynamics.  相似文献   

13.
Logarithmic corrections to the extremal black hole entropy can be computed purely in terms of the low energy data—the spectrum of massless fields and their interaction. The demand of reproducing these corrections provides a strong constraint on any microscopic theory of quantum gravity that attempts to explain the black hole entropy. Using quantum entropy function formalism we compute logarithmic corrections to the entropy of half BPS black holes in N=2{{\mathcal N}=2} supersymmetric string theories. Our results allow us to test various proposals for the measure in the OSV formula, and we find agreement with the measure proposed by Denef and Moore if we assume their result to be valid at weak topological string coupling. Our analysis also gives the logarithmic corrections to the entropy of extremal Reissner–Nordstrom black holes in ordinary Einstein–Maxwell theory.  相似文献   

14.
In a box of size L, a spatially antisymmetric square-well potential of a purely imaginary strength ig and size l < L is interpreted as an initial element of the SUSY hierarchy of solvable Hamiltonians, the energies of which are all real for g < g c (l). The first partner potential is constructed in closed form and discussed. Presented at the 3rd International Workshop “Pseudo-Hermitian Hamiltonians in Quantum Physics”, Istanbul, Turkey, June 20–22, 2005.  相似文献   

15.
The field equations of supersymmetric Yang–Mills theory in ten dimensions may be formulated as vanishing curvature conditions on light-like rays in superspace. In this article, we investigate the physical content of the modified SO(7) covariant superspace constraints put forward earlier [11]. To this end, group-algebraic methods are developed which allow to derive the set of physical fields and their equations of motion from the superfield expansion of the supercurl, systematically. A set of integrable superspace constraints is identified which drastically reduces the field content of the unconstrained superfield but leaves the spectrum including the original Yang–Mills vector field completely off-shell. A weaker set of constraints gives rise to additional fields obeying first order differential equations. Geometrically, the SO(7) covariant superspace constraints descend from a truncation of Witten's original linear system to particular one-parameter families of light-like rays. Received: 20 April 2000 / Accepted: 10 September 2000  相似文献   

16.
A spinor field interacting with a zero-mass neutral scalar field is considered for the case of the simplest type of direct interaction, where the interaction Lagrangian has the formL int =1/2 ϕαϕ F(S) whereF(S) is an arbitrary function of the spinor field invariantS=ψψ. Exact solutions of the corresponding systems of equations that take into account the natural gravitational field in a plane-symmetric metric are obtained. It is proved that the initial system of equations has regular localized soliton-type solutions only if the energy density of the zero-mass scalar field is negative as it “disengages” from interaction with the spinor field. In two-dimensional space-time the system of field equations we are studying describes the configuration of fields with constant energy densityT 00 , i.e., no soliton-like solutions exist in this case. Russian People’s Friendship University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 69–75, July, 1998.  相似文献   

17.
We develop a theory of f{\phi} -coordinated (quasi-) modules for a general nonlocal vertex algebra where f{\phi} is what we call an associate of the one-dimensional additive formal group. By specializing f{\phi} to a particular associate, we obtain a new construction of weak quantum vertex algebras in the sense of Li (Selecta Mathematica (New Series) 11:349–397, 2005). As an application, we associate weak quantum vertex algebras to quantum affine algebras, and we also associate quantum vertex algebras and f{\phi} -coordinated modules to a certain quantum βγ-system explicitly.  相似文献   

18.
Junchao Chen  Biao Li 《Pramana》2012,78(3):375-388
In this paper, an extended multiple (G′/G)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. The validity and advantages of the proposed method is illustrated by its applications to the Sharma–Tasso–Olver equation, the sixth-order Ramani equation, the generalized shallow water wave equation, the Caudrey–Dodd–Gibbon–Sawada–Kotera equation, the sixth-order Boussinesq equation and the Hirota–Satsuma equations. As a result, various complexiton solutions consisting of hyperbolic functions, trigonometric functions, rational functions and their mixture with parameters are obtained. When some parameters are taken as special values, the known double solitary-like wave solutions are derived from the double hyperbolic function solution. In addition, this method can also be used to deal with some high-dimensional and variable coefficients’ nonlinear evolution equations.  相似文献   

19.
20.
Frobenius manifolds (solutions of WDVV equations) in canonical coordinates are determined by the system of Darboux–Egoroff equations. This system of partial differential equations appears as a specific subset of the n-component KP hierarchy. KP representation theory and the related Sato infinite Grassmannian are used to construct solutions of this Darboux–Egoroff system and the related Frobenius manifolds. Finally we show that for these solutions Dubrovin's isomonodromy tau-function can be expressed in the KP tau-function. Received: 1 September 1998 / Accepted: 7 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号