首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
BACKGROUND: The observations that Src(-/-) mice develop osteopetrosis and Src family tyrosine kinase inhibitors decrease osteoclast-mediated resorption of bone have implicated Src in the regulation of osteoclast-resorptive activity. We have designed and synthesized a compound, AP22161, that binds selectively to the Src SH2 domain and demonstrated that it inhibits Src-dependent cellular activity and inhibits osteoclast-mediated resorption. RESULTS: AP22161 was designed to bind selectively to the Src SH2 domain by targeting a cysteine residue within the highly conserved phosphotyrosine-binding pocket. AP22161 was tested in vitro for binding to SH2 domains and was found to bind selectively and with high affinity to the Src SH2 domain. AP22161 was further tested in mechanism-based cellular assays and found to block Src SH2 binding to peptide ligands, inhibit Src-dependent cellular activity and diminish osteoclast resorptive activity. CONCLUSIONS: These results indicate that a compound that selectively inhibits Src SH2 binding can be used to inhibit osteoclast resorption. Furthermore, AP22161 has the potential to be further developed for treating osteoporosis.  相似文献   

2.
A human cDNA phage display library screen, using a phosphopeptide designed to mimic the activation loop phosphotyrosine of the Src tyrosine kinase, has identified the N-terminal SH2 domain of the p85 regulatory subunit of phosphatidyl inositol-3 kinase (PI3K) as an interacting recognition domain. Activation loop phosphorylation is known to play a conformational role in kinase activation, but is largely not thought to play a role in protein/protein recognition. Affinity chromatography and biochemical evaluation in mouse fibroblast cells has confirmed the dependence of this interaction on both the Src activation loop phosphotyrosine and the N-terminal SH2 domain of PI3K.  相似文献   

3.
4.
Protein tyrosine phosphatases, SH2 and PTB domains are crucial elements for cellular signal transduction and regulation. Much effort has been directed towards elucidating their specificity in the past decade using a variety of approaches. Combinatorial library methods have contributed significantly to the understanding of substrate and ligand specificity of phosphoprotein recognizing domains. This review gives a brief overview of the structural characteristics of protein tyrosine phosphatases, SH2 and PTB domains and their binding to phosphopeptides. The chemical synthesis of peptides containing phosphotyrosine or phosphotyrosine mimics and the various formats of synthesis and deconvolution of combinatorial libraries are explained in detail. Examples are given as how different combinatorial libraries have been used to study the interaction of phosphopeptides with SH2 domains and phosphatases. The intrinsic advantages and difficulties of library synthesis, screening and deconvolution are pointed out. Finally, some experimental results on the substrate specificity of protein tyrosine phosphatase 1B and the SH2 domain of the adaptor protein Grb-2 are summarized and discussed.  相似文献   

5.
Src-family kinases (SFKs) play important roles in human biology and are key drug targets as well. However, achieving selective inhibition of individual Src-family kinases is challenging due to the high similarity within the protein family. We describe rhodium(ii) conjugates that deliver both potent and selective inhibition of Src-family SH3 domains. Rhodium(ii) conjugates offer dramatic affinity enhancements due to interactions with specific and unique Lewis-basic histidine residues near the SH3 binding interface, allowing predictable, structure-guided inhibition of SH3 targets that are recalcitrant to traditional inhibitors. In one example, a simple metallopeptide binds the Lyn SH3 domain with 6 nM affinity and exhibits functional activation of Lyn kinase under biologically relevant concentrations (EC50 ∼ 200 nM).  相似文献   

6.
We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.  相似文献   

7.
A stepwise library-based strategy has been employed to acquire a potent ligand for the SH3 domain of Fyn, a Src kinase family member that plays a key role in T cell activation. The easily automated methodology is designed to identify potential interaction sites that circumscribe the protein/peptide binding region on the SH3 domain. The library protocol creates peptide/nonpeptide chimeras that are able to bind to these interaction sites that are otherwise inaccessible to natural amino acid residues. The peptide-derived lead and the Fyn-SH3 domain form a complex that exhibits a K(D) of 25 +/- 5 nM, approximately 1000-fold more potent than that displayed by the corresponding conventional peptide ligand. Furthermore, the lead ligand exhibits selectivity against SH3 domains derived from other Src kinases, in spite of a sequence identity of approximately 80%.  相似文献   

8.
A membrane glycoprotein CD4 functions as a co-receptor of a T lymphocyte. The co-receptor function has been attributed to a protein tyrosine kinase, p56lck, which is activated upon CD4 binding to MHC molecule. In this study, we present evidences that one of the pathways through which CD4 transmits its signal is cytoskeleton association of p56lck tyrosine kinase as well as CD4 itself. Cytoskeletal association of both proteins is inhibited by a tyrosine kinase inhibitor, genistein, indicating that tyrosine protein kinase activation is important for cytoskeletal association of CD4 and p56lck. Cytoskeletal association of these proteins by CD4 cross-linking is not affected by inhibitors of protein kinase C nor PI3-kinase. Taken together, these results suggest that CD4 cross-linking activates a tyrosine kinase which then induces the simultaneous association of CD4 and p56lck with cytoskeleton.  相似文献   

9.
Galectin-1 (GAL1) is a beta-galactoside-binding protein that has been implicated in the regulation of viability of lymphoid cells. However, the signaling pathway governed by the binding of GAL1 to the cell membrane is not understood yet. As a first step toward the elucidation of GAL1-initiated signaling events, electrophoresis techniques such as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and two-dimensional electrophoresis (2-DE) were used together with precipitation techniques. This allowed us to identify the membrane receptor of GAL1, and to characterize the signal resulting from the binding of GAL1 to this receptor. Our results demonstrate that the tyrosine phosphatase CD45 is the receptor for GAL1, and that the src-type tyrosine kinase Lyn is a target for the effects of GAL1/CD45 interactions in B-cells. Furthermore, these results show the usefulness of combined precipitation and electrophoresis techniques to analyze phosphotyrosine-dependent mechanisms during the study of cell functions.  相似文献   

10.
Biosensor technologies based on optical readout are widely used in protein–protein interaction studies. Here we describe a fast and simple approach to the creation of oriented interfacial architectures for surface plasmon resonance (SPR) transducers, based on conventional biochemical procedures and custom reagents. The proposed protocol permits the oriented affinity-capture of GST fusion proteins by a specific antibody which is bound to protein A, which in turn has been immobilized on the transducer surface (after the surface has been modified by guanidine thiocyanate). The applicability of the method was demonstrated by studying the interaction between retinoblastoma tumor suppressor protein (pRb) and MRS18-2 proteins. The formation of the pRb–MRS18-2 protein complex was examined and the pRb binding site (A-box–spacer–B-box) was mapped. We have also shown that MRS18-2, which was detected as the Epstein–Barr virus-encoded EBNA-6 binding partner using the yeast two-hybrid system, binds to pRb in GST pull-down assays.  相似文献   

11.
PDZ (PSD-95/Discs-large/ZO-1 homology) domains represent putative targets in several diseases including cancer, stroke, addiction and neuropathic pain. Here we describe the application of a simple and fast screening assay based on fluorescence polarization (FP) to identify inhibitors of the PDZ domain in PICK1 (protein interacting with C kinase 1). We screened 43,380 compounds for their ability to inhibit binding of an Oregon Green labeled C-terminal dopamine transporter peptide (OrG-DAT C13) to purified PICK1 in solution. The assay was highly reliable with excellent screening assay parameters (Z'≈0.7 and Z≈0.6). Out of ~200 compounds that reduced FP to less than 80% of the control wells, six compounds were further characterized. The apparent affinities of the compounds were determined in FP competition binding experiments and ranged from ~5.0 μM to ~193 μM. Binding to the PICK1 PDZ domain was confirmed for five of the compounds (CSC-03, CSC-04, CSC-43, FSC-231 and FSC-240) in a non-fluorescence based assay by their ability to inhibit pull-down of PICK1 by a C-terminal DAT GST fusion protein. CSC-03 displayed the highest apparent affinity (5.0 μM) in the FP assay, and was according to fluorescence resonance energy transfer (FRET) experiments capable of inhibiting the interaction between the C-terminus of the GluR2 subunit of the AMPA-type glutamate receptor and PICK1 in live cells. Additional experiments suggested that CSC-03 most likely is an irreversible inhibitor but with specificity for PICK1 since it did not bind three different PDZ domains of PSD-95. Summarized, our data suggest that FP based screening assays might be a widely applicable tool in the search for small molecule inhibitors of PDZ domain interactions.  相似文献   

12.
Fe65 has been characterized as an adaptor protein, originally identified as an expressed sequence tag (EST) corresponding to an mRNA expressed at high levels in the rat brain. It contains one WW domain and two phosphotyrosine interaction/phosphotyrosine binding domains (PID1/PID2). As the neuronal precursor cell expressed developmentally down regulated 4-2 (Nedd4-2) has a putative WW domain binding motif (72PPLP75) in the N-terminal domain, we hypothesized that Fe65 associates with Nedd4-2 through a WW domain interaction, which has the characteristics of E3 ubiquitin-protein ligase. In this paper, we present evidence for the interaction between Fe65 WW domain and Nedd4-2 through its specific motif, using a pull down approach and co-immunoprecipitation. Additionally, the co-localization of Fe65 and Nedd4-2 were observed via confocal microscopy. Co-localization of Fe65 and Nedd4-2 was disrupted by either the mutation of Fe65 WW domain or its putative binding motif of Nedd4-2. When the ubiquitin assay was performed, the interaction of Nedd4-2 (wt) with Fe65 is required for the cell apoptosis and the ubiquitylation of Fe65. We also observed that the ubiquitylation of Fe65 (wt) was augmented depending on Nedd4-2 expression levels, whereas the Fe65 WW domain mutant (W243KP245K) or the Nedd4-2 AL mutant (72PPLP75 was changed to 72APLA75) was under-ubiquitinated significantly. Thus, our observations implicated that the protein-protein interaction between the WW domain of Fe65 and the putative binding motif of Nedd4-2 down-regulates Fe65 protein stability and subcellular localization through its ubiquitylation, to contribute cell apoptosis.  相似文献   

13.
The noncovalent binding of various peptide ligands to pp60src (Src) SH2 (Src homology 2) domain protein (12.9 ku) has been used as a model system for development of electrospray ionization mass spectrometry (ESI-MS) as a tool to study noncovalently bound complexes. SH2 motifs in proteins are critical in the signal transduction pathways of the tyrosine kinase growth factor receptors and recognize phosphotyrosine-containing proteins and peptides. ESI-MS with a magnetic sector instrument and array detection has been used to detect the protein-peptide complex with low-picomole sensitivity. The relative abundances of the multiply charged ions for the complex formed between Src SH2 protein and several nonphosphorylated and phosphorylated peptides have been compared. The mass spectrometry data correlate well to the measured binding constants derived from solution-based methods, indicating that the mass spectrometry-based method can be used to assess the affinity of such interactions. Solution-phase equilibrium constants may be determined by measuring the amount of bound and unbound species as a function of concentration for construction of a Scatchard graph. ESI-MS of a solution containing Src SH2 with a mixture of phosphopeptides showed the expected protein-phosphopeptide complex as the dominant species in the mass spectrum, demonstrating the method’s potential for screening mixtures from peptide libraries.  相似文献   

14.
p21-activated kinase (PAK) targeting to the plasma membrane is essential for PC12 cell neurite outgrowth. Phospholipase C-gamma1 (PLC-gamma1) can mediate the PAK translocation in response to growth factors, since PLC-gamma1 binds to both tyrosine-phosphorylated receptor tyrosine kinases and PAK through its SH2 and SH3 domain, respectively. In the present study, we examined a potential role for PLC-gamma1 in the basic fibroblast growth factor (bFGF)-induced PAK translocation using stable PC12 cell lines that overexpress in a tetracycline-inducible manner either the wild-type FGFR-1 or the Y766F FGFR-1 mutant. Phosphatidylinositol hydrolysis was increased 6.5-fold in response to bFGF in the wild type cells but negligible in the mutant cells. The recombinant GST-PLC-gamma1 SH3 was able to bind to PAK1 but not GST alone. However, examination of PLC-gamma1 as an adaptor for translocation of PAK1 in cells showed that both cells transfected with pEGFP-PAK1 was able to differentiate for 24 h, as visualized by laser confocal microscopy. Translocation of PAK1 to growth cones occurs at similar levels in both wild and mutant cells. These results suggest that a protein(s) other than PLC-gamma1 is functionally relevant for PAK targeting.  相似文献   

15.
康文渊  丁若凡  范倩  田菲菲 《化学通报》2015,78(10):944-944
FLT3(FMS样酪氨酸酶III)是酪氨酸激酶受体(RTKIII)成员之一,其异常超表达或突变与急性髓细胞白血病(AML)呈现非常大的相关性,成为治疗AML的重要靶位点。本文采用不同的方法对FLT3活性位点进行了预测,利用分子对接、分子动力学以及药效团分析研究了新型嘧啶类化合物与FLT3的相互作用与结合模式。分子对接得到的结合模式与分子动力学模拟得到的结果一致,结合药效团分析表明该嘧啶类化合物主要通过疏水相互作用和氢键与FLT3激活位点结合,从而起到抑制作用。本研究对以FLT3为靶点的嘧啶类抑制剂的开发提供了理论和实验依据。  相似文献   

16.
The Src homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk) binds two separate ligands: a phosphotyrosine-containing peptide and the Itk Src homology 3 (SH3) domain. Binding specificity for these ligands is regulated via cis/trans isomerization of the Asn 286-Pro 287 imide bond in the Itk SH2 domain. In this study, we develop a novel method of analyzing chemical shift perturbation and cross-peak volumes to measure the affinities of both ligands for each SH2 conformer. We find that the cis imide bond containing SH2 conformer exhibits a 3.5-fold higher affinity for the Itk SH3 domain compared with binding of the trans conformer to the same ligand, while the trans conformer binds phosphopeptide with a 4-fold greater affinity than the cis-containing SH2 conformer. In addition to furthering the understanding of this system, the method presented here will be of general application in quantitatively determining the specificities of conformationally heterogeneous systems that use a molecular switch to regulate binding between multiple distinct ligands.  相似文献   

17.
Methodologies for rapidly identifying cellular protein interactions resulting in posttranslational modification of one of the partners are lacking. Here, we select for substrates of the v-abl tyrosine kinase from two protein display libraries in which the protein is covalently linked to its encoding mRNA. Successive selection cycles from a randomized peptide library identified a consensus sequence closely matching that previously reported for the v-abl tyrosine kinase. Selections from a proteomic library derived from cellular mRNA identified several novel targets of v-abl, including a new member of a class of SH2 domain-containing adaptor proteins. Upon modification, several of the substrates obtained in these selections were found to be effective inhibitors of v-abl kinase activity in vitro. These experiments establish a novel method for identifying the substrates of tyrosine kinases from synthetic and cellular protein libraries.  相似文献   

18.
BACKGROUND: The ability to control specific protein-protein interactions conditionally in vivo would be extremely helpful for analyzing protein-protein interaction networks. SH3 (Src homology 3) modular protein binding domains are found in many signaling proteins and they play a crucial role in signal transduction by binding to proline-rich sequences. RESULTS: Random in vitro mutagenesis coupled with yeast two-hybrid screening was used to identify mutations in the second SH3 domain of Nck that render interaction with its ligand temperature sensitive. Four of the mutants were functionally temperature sensitive in mammalian cells, where temperature sensitivity was correlated with a pronounced instability of the mutant domains at the nonpermissive temperature. Two of the mutations affect conserved residues in the hydrophobic core (Val133 and Val160), suggesting a general strategy for engineering temperature-sensitive SH3-containing proteins. Indeed mutagenesis of the corresponding positions in another SH3 domain, that of Crk-1, rendered the full-length Crk-1 protein temperature sensitive for function and stability in mammalian cells. CONCLUSIONS: Construction of temperature-sensitive SH3 domains is a novel approach to regulating the function of SH3 domains in vivo. Such mutants will be valuable in dissecting SH3-mediated signaling pathways. Furthermore, the methodology described here to isolate temperature-sensitive domains should be widely applicable to any domain involved in protein-protein interactions.  相似文献   

19.
Druggability assessment of a target protein has emerged in recent years as an important concept in hit-to-lead optimization. A reliable and physically relevant measure of druggability would allow informed decisions on the risk of investing in a particular target. Here, we define "druggability" as a quantitative estimate of binding sites and affinities for a potential drug acting on a specific protein target. In the present study, we describe a new methodology that successfully predicts the druggability and maximal binding affinity for a series of challenging targets, including those that function through allosteric mechanisms. Two distinguishing features of the methodology are (i) simulation of the binding dynamics of a diversity of probe molecules selected on the basis of an analysis of approved drugs and (ii) identification of druggable sites and estimation of corresponding binding affinities on the basis of an evaluation of the geometry and energetics of bound probe clusters. The use of the methodology for a variety of targets such as murine double mutant-2, protein tyrosine phosphatase 1B (PTP1B), lymphocyte function-associated antigen 1, vertebrate kinesin-5 (Eg5), and p38 mitogen-activated protein kinase provides examples for which the method correctly captures the location and binding affinities of known drugs. It also provides insights into novel druggable sites and the target's structural changes that would accommodate, if not promote and stabilize, drug binding. Notably, the ability to identify high affinity spots even in challenging cases such as PTP1B or Eg5 shows promise as a rational tool for assessing the druggability of protein targets and identifying allosteric or novel sites for drug binding.  相似文献   

20.
Herein, we report a method for studying protein-peptide interactions which exploits the luminescence properties of Tb(III). Lanthanide-binding tags (LBTs) are short peptide sequences comprising 15-20 naturally occurring amino acids that bind Tb(III) with high affinity. These genetically encodable luminescent tags are smaller in size than the Aequorea victoria fluorescent proteins (AFPs) and benefit from the long-lived luminescence lifetime of lanthanides. In this study, luminescence resonance energy transfer (LRET) was used to monitor the interaction between SH2 domains and different phosphopeptides. For the study, the SH2 domains of Src and Crk kinase were each coexpressed with an LBT, and phosphorylated and nonphosphorylated peptides were chemically synthesized with organic fluorophores. The LRET between the protein-bound Tb(III) and the peptide-based organic fluorophore was shown to be specific for the recognition of the SH2 domain and the peptide binding partner. This method can detect differences in binding affinity and can be used to measure the dissociation constant for the protein-peptide interaction. In addition, decay experiments can be used to calculate the distance between a site in the bound peptide and the protein using F?rster theory. In all of these experiments, the millisecond luminescence lifetime of Tb(III) can be exploited using time-resolved detection to eliminate background fluorescence from organic fluorophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号