首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca3Co4O9 powder was prepared by a polyacrylamide gel route in this paper. The effect of the processing on microstructure and thermoelectric properties of Ca3Co4O9 ceramics via spark plasma sintering were investigated. Electrical measurement shows that the Seebeck coefficient and conductivity are 170 μV/K and 128 S/cm, respectively, at 700 °C, yielding a power factor value of 3.70 × 10−4 W m−1 K−2 at 700 °C, which is larger than that of Ca3Co4O9 ceramics via solid-state reaction processing. The polyacrylamide gel processing is a fast, cheap, reproducible and easily scaled up chemical route to improve the thermoelectric properties of Ca3Co4O9 ceramics by preparing the homogeneous and pure Ca3Co4O9 phase.  相似文献   

2.
Co3O4 crystallites with particle, plate-, tube-, rod- and sheet-like morphologies were successfully prepared by the calcination of the corresponding precursors synthesized via a precipitation or hydrothermal procedure. The morphologies of the precursors and Co3O4 nano-tubes were detected by field emission scanning electron microscopy (FE-SEM). The as-obtained Co3O4 samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and special surface area measurement (BET). The electrocatalytic activity of p-nitrophenol reduction with the Co3O4 products decorated on a glassy carbon electrode (GCE) was tested, respectively, using cyclic voltammetry (CV) in a basic solution. The results indicated that p-nitrophenol was reduced with higher current density but almost at a constant potential on the Co3O4/GCE in contrast with that on a bare GCE at the same conditions. The highly catalytic activity of the as-prepared Co3O4 in a basic solution suggested their wide applications in environmental treatment or organic synthesis.  相似文献   

3.
Non-precious metal bifunctional catalysts are of great interest for metal–air batteries, electrolysis, and regenerative fuel cell systems due to their performance and cost benefits compared to the Pt group metals (PGM). In this work, metal oxides of La0.1Ca0.9MnO3 and nano Co3O47 catalyst as bifunctional catalysts were used in oxygen reduction and evolution reactions (ORER). The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption isotherms. The electrocatalytic activity of the perovskite-type La0.1Ca0.9MnO3 and Co3O4 catalysts both as single and mixtures of both were assessed in alkaline solutions at room temperature. Electrocatalyst activity, stability, and electrode kinetics were studied using cyclic voltammetry (CV) and rotating disk electrode (RDE). This study shows that the bifunctional performance of the mixed La0.1Ca0.9MnO3 and nano Co3O4 was superior in comparison to either La0.1Ca0.9MnO3 or nano Co3O4 alone for ORER. The improved activity is due to the synergistic effect between the La0.1Ca0.9MnO3 and nano Co3O4 structural and surface properties. This work illustrates that hybridization between these two metal oxides results in the excellent bifunctional oxygen redox activity, stability, and cyclability, leading to a cost-effective application in energy conversion and storage, albeit to the cost of higher catalyst loadings.  相似文献   

4.
Homogeneous La1 − x Ca x MnO3 solid solutions have been synthesized by the Pechini method (using polymer-solid compositions). Their microstructure, stability at high temperatures, and catalytic activity in methane oxidation are reported. A continuous series of solid solutions stable in air up to 1100°C forms in the system, and the particle surface is enriched with calcium. A distinctive microstructural feature of the particles is their microporosity. The catalytic activity of all calcium-containing samples (except for x = 0.7) below 700°C is lower than that of lanthanum manganite and decreases under the action of the reaction medium, which can be due to the decrease in the amount of weakly bound oxygen on the surface because of the enrichment of the surface with calcium and the formation of strongly bound surface carbonates. The higher activity and stability of the La0.3Ca0.7MnO3 sample (calcined at 1100°C) above 500°C can be due to the formation of nanosized areas with an Mn3O4 structures on the perovskite particle surface in the reaction medium.  相似文献   

5.
A highly efficient and visible light (λ ≥ 420 nm) responsive composite photocatalyst, Co3O4/FeWO4 was prepared by simple impregnation method. The heterojunction semiconductors Co3O4/FeWO4 demonstrated notably high photocatalytic activity over a wide range of composition than the individual component Co3O4 or FeWO4 for the complete degradation of 1,4-dichlorobenzene (DCB) in aqueous phase under visible light irradiation. The photocatalytic activity of composite was optimized at 1/99 Co3O4/FeWO4 composition. After 2 h of visible light irradiation 51% decomposition of 1,4-dichlorobenzene (DCB) was observed utilizing 1/99 Co3O4/FeWO4 photocatalyst while the end members demonstrated a negligible degradation under the same experimental condition. The valence band (VB) and conduction band (CB) of Co3O4 is located above the VB and CB of FeWO4, respectively. Both the semiconductors Co3O4 and FeWO4 exhibit strong absorption over the wide range of visible light. The obviously enhanced photocatalytic performance of Co3O4/FeWO4 composite has been discussed on the hole (h+) as well as electron (e?) transfer mechanism between the VB and CB of individual semiconductors.  相似文献   

6.
Phase relations in the solid state in the FeVO4–Co3V2O8 system, in the whole range of components concentration have been studied. It was found that the composition of the phase of the howardevansite type structure, formed in the investigated system, corresponds with the Co2.616Fe4.256V6O24 formula. The phase of the lyonsite type structure has a homogeneity range with the Co3+1.5xFe4–xV6O24 formula (0.476 formula (0.476<x<1.667). The melting temperature and the volume of the unit cell of the lyonsite type structure phase increases together with the rise of cobalt quantity contained in it. Basing on the results of the DTA and XRD measurements a phase diagram of the FeVO4–Co3V2O8 system up to the solidus line was constructed.  相似文献   

7.
The paper describes a nonenzymatic amperometric H2O2 sensor that uses a nanocomposite consisting of Co3O4 nanoparticles (NPs) and mesoporous carbon nanofibers (Co3O4-MCNFs). The Co3O4 NPs were grown in situ on the MCNFs by a solvothermal procedure. The synergetic combination of the electrocatalytic activity of the Co3O4 NPs and the electrical conductivity of MCNFs as an immobilization matrix enhance the sensing ability of the hybrid nanostructure. The oxidation current, best measured at 0.2 V (vs. SCE) is linear in the 1 to 2580 μM H2O2 concentration range, with a 0.5 μM lower detection limit (at an S/N ratio of 3). The sensor is highly selective even in the presence of common electroactive interferents. It was applied to the determination of H2O2 in spiked milk samples.
Graphical abstract Schematic of the synthesis of a nanocomposite consisting of Co3O4 nanoparticles (NPs) and mesoporous carbon nanofibers (Co3O4-MCNFs) by a solvothermal procedure. It was used as electrocatalyst for direct oxidation of H2O2.
  相似文献   

8.
Magnetic Co3O4 nanoparticles were prepared by using microporous regenerated cellulose films as sacrificial scaffolds. The cellulose macromolecules and the porous structure of the films made them used as spatially confined reacting sites where Co(OH)2 nanoparticles could be synthesized in situ. When the cellulose matrix was removed by sintering at 500 °C, Co3O4 nanoparticles were obtained. XRD and XPS indicated that the prepared nanoparticles were pure Co3O4 without any impurity. TEM and SEM images revealed that the particle size of the nanoparticles was smaller than 100 nm. The nanoparticles had weak ferromagnetic properties at 25 °C. Furthermore, the pronounced quantum confinement effects of the synthesized nanoparticles have been observed, the optical bandgap energies determined were about 1.92 ~ 2.12 and 2.74 ~ 2.76 eV for O2− → Co3+ and O2− → Co2+ charge-transfer processes, respectively. Furthermore, the resulted Co3O4 nanoparticles behaved stable electrochemical performance with promising applications in the electrode for lithium ion battery.  相似文献   

9.
Layered LiNi1/3Co1/3Mn1/3O2 nanoparticles were prepared by modified Pechini method and used as cathode materials for Li-ion batteries. The pyrolytic behaviors of the foamed precursors were analyzed by use of simultaneous thermogravimetric and differential thermal analysis (TG-DTA). Structure, morphology and electrochemical performance characterization of the samples were investigated by X-ray diffraction (XRD), field emission scanning electron macroscopy(SEM), Brunauer-Emmett-Teller (BET) specific surface area and charge–discharge tests. The results showed that the samples prepared by modified Pechini method caclined at 900 °C for 10 h were indexed to pure LiNi1/3Co1/3Mn1/3O2 with well hexagonal structure. The particle size was in a range of 100–300 nm. The specific surface area was larger than that of the as-obtained sample by Pechini method. Initial discharge capacity of 163.8 mAh/g in the range 2.8–4.4 V (vs. Li/Li+) and at 0.1C for LiNi1/3Co1/3Mn1/3O2 prepared by modified Pechini method was obtained, higher than that of the sample prepared by Pechini method (143.5 mAh/g). Moreover, the comparison of electrochemical results at different current rates indicated that the sample prepared by modified Pechini method exhibited improved rate capability.  相似文献   

10.
In this work, highly chemiluminescent magnetic mesoporous carbon with yolk-shell structure was synthesized by encapsulating N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and Co2+ into the magnetic mesoporous carbon composites (Co2+-ABEI-Fe3O4@ void@C). The synthetic Co2+-ABEI-Fe3O4@void@C showed a good magnetic separation property, which could remove residual ABEI molecules and Co2+ in less than 3 min under an external magnet. Moreover, the synthetic Co2+-ABEI-Fe3O4@void@C demonstrated good chemiluminescence (CL) property and good stability when interacted with alkaline H2O2 solution. The CL intensity of such Co2+-ABEI-Fe3O4@void@C was about 120 times higher than that of ABEI-Fe3O4@void@C. The Co2+-ABEIFe3O4@ void@C also exhibited good electrochemiluminescence (ECL) property in alkaline solution. The outstanding CL/ECL performance of the Co2+-ABEI-Fe3O4@void@C was attributed to the Co2+ immobilized in the Co2+-ABEI-Fe3O4@void@C, which catalyzed the decomposition of H2O2 to generate O2?? and HO?, expediting the CL/ECL reaction. The synthetic Co2+-ABEI-Fe3O4@void@C may be of great application for the development of new methodologies in bioanalysis.  相似文献   

11.
Transition metal catalysts have been considerably used for NH3 decomposition because of the potential application in COx-free H2 generation for fuel cells. However, most transition metal catalysts prepared via traditional synthetic approaches performed the inferior stability due to the agglomeration of active components. Here, we adopted an efficient method, aerosol-assisted self-assembly approach (AASA), to prepare the optimized cobalt-alumina (Co3O4-Al2O3) catalysts. The Co3O4-Al2O3 catalysts exhibited excellent catalytic performance in the NH3 decomposition reaction, which can reach 100% conversion at 600 °C and maintain stable for 72 h at a gaseous hourly space velocity (GHSV) of 18000 cm3 gcat?1 h?1. The catalysts were characterized by various techniques including transmission electron microscope (TEM), scanning electron microscope (SEM), nitrogen sorption, temperature-programmed reduction by hydrogen (H2-TPR), ex-situ/in-situ Raman and ex-situ/in-situ X-ray diffraction (XRD) to obtain the information about the structure and property of the catalysts. H2-TPR and in-situ XRD results show that there is strong interaction between the cobalt and alumina species, which influences the redox properties of the catalysts. It is found that even a low content of alumina (10 at%) is able to stabilize the catalysts due to the adequate dispersion and rational interaction between different components, which ensures the high activity and superior stability of the cobalt-alumina catalysts.  相似文献   

12.
Thermoelectric NaxCo2O4/Ag composites were synthesized by citric acid complex (CAC) method and Ag precipitation from CH3COOAg aqueous solution on the NaxCo2O4 powders. Effects of the synthesis process on microstructure and thermoelectric performance of NaxCo2O4/Ag composites were investigated. When the NaxCo2O4 CAC powders were dipped in CH3COOAg aqueous solution and dried, fine Ag particles less than around 300 nm in size were precipitated on the surface of NaxCo2O4 powders. After the subsequent sintering process, the flaky Ag phase, the length and thickness of which were up to 5 and 1 μm, respectively, existed along interfaces between NaxCo2O4 grains. The sizes of Ag particles obtained in this study were found to be smaller than those of the conventionally prepared NaxCo2O4/Ag composites. The fine dispersion of Ag grains was effective for suppressing the increase in thermal conductivity due to the addition of metallic phase, Ag, and for improving the thermoelectric performance of NaxCo2O4/Ag composites, suggesting that the synthesis technique composed of the CAC method and Ag precipitation from CH3COOAg aqueous solution is significantly important process for thermoelectric NaxCo2O4/Ag composites.  相似文献   

13.
Self-supported and binder-free electrodes based on homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies (Co3O4/co-modified TiO2 nanotube arrays (m-TNAs)) are prepared via a simple and cost-effective method in this paper. The highly ordered TNAs offer direct pathways for electron and ion transport and can be used as 3D substrate for the decoration of electroactive materials without any binders. Then, by a facile one-step calcination process, the electrochemical performance of the as-obtained carbon layer and oxygen vacancy m-TNAs is approximately 83 times higher than that of pristine TNAs. In addition, Co3O4 nanoparticles are uniformly deposited onto the m-TNAs by a universal chemical bath deposition (CBD) process to further improve the supercapacitive performance. Due to the synergistic effect of m-TNAs and Co3O4 nanoparticles, a maximum specific capacitance of 662.7 F g?1 can be achieved, which is much higher than that of Co3O4 decorated on pristine TNAs (Co3O4/TNAs; 166.2 F g?1). Furthermore, the specific capacitance retains 86.0 % of the initial capacitance after 4000 cycles under a high current density of 10 A g?1, revealing the excellent long-term electrochemical cycling stability of Co3O4/m-TNAs. Thus, this kind of heterostructured Co3O4/m-TNAs could be considered as promising candidates for high-performance supercapacitor electrodes.  相似文献   

14.
Zn-doped LiNi0.8Co0.2O2 exhibits impressive electrochemical performance but suffers limited cycling stability due to the relative large size of irregular and bare particle which is prepared by conventional solid-state method usually requiring high calcination temperature and prolonged calcination time. Here, submicron LiNi0.8Co0.15Zn0.05O2 as cathode material for lithium-ion batteries is synthesized by a facile sol-gel method, which followed by coating Al2O3 layer of about 15 nm to enhance its electrochemistry performance. The as-prepared Al2O3-coated LiNi0.8Co0.15Zn0.05O2 cathode delivers a highly reversible capacity of 182 mA h g?1 and 94% capacity retention after 100 cycles at a current rate of 0.5 C, which is much superior to that of bare LiNi0.8Co0.15Zn0.05O2 cathode. The enhanced electrochemistry performance can be attributed to the Al2O3-coated protective layer, which prevents the direct contact between the LiNi0.8Co0.15Zn0.05O2 and electrolyte. The escalating trend of Li-ion diffusion coefficient estimated form electrochemical impedance spectroscopic (EIS) also indicate the enhanced structural stability of Al2O3-coated LiNi0.8Co0.15Zn0.05O2, which rationally illuminates the protection mechanism of the Al2O3-coated layer.  相似文献   

15.
Conducting polyaniline/Cobaltosic oxide (PANI/Co3O4) composites were synthesized for the first time, by in situ deposition technique in the presence of hydrochloric acid (HCl) as a dopant by adding the fine grade powder (an average particle size of approximately 80 nm) of Co3O4 into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD). The composition and the thermal stability of the composites were investigated by TG-DTG. The results suggest that the thermal stability of the composites is higher than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and nano-Co3O4.  相似文献   

16.
Trimetallic NiMoW/Al2O3 catalyst was prepared using mixed H4SiMo3W9O40 heteropoly acid of Keggin structure and nickel citrate. Bimetallic NiMo/Al2O3 and NiW/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, were synthesized as reference samples. The use of mixed H4SiMo3W9O40 heteropoly acid as an oxide precursor allows the tungsten sulfidation degree and the degree of promotion of active phase particles to be increased. The hydrodesulfurization activity is enhanced as compared to NiW/Al2O3 catalyst. The synergistic enhancement of the activity of the NiMo3W9/Al2O3 catalyst relative to the bimetallic analogs is probably caused by formation of new mixed promoted active sites for direct desulfurization.  相似文献   

17.
In this paper, ZnO was applied to modify the surface of LiNi1/3Co1/3Mn1/3O2 cathode material by a simple method. Powder X-ray diffraction (XRD) results show that both of the pristine material and the modified material were well crystallized and closely similar to each other. The crystal parameters of pristine material increased by modified measure. Scan electron microscope (SEM) pictures exhibit that the quasispherical pristine material was modified to the squareness one. Transmission electron microscope (TEM) image clearly elucidates that ZnO (several nanometers to 20 nm) was successful coated on surface of LiNi1/3Co1/3Mn1/3O2. X-ray photo-electron spectrometry (XPS) is used to characterize the composite of the coating layer on the surface of modified material. Electrochemical performance results present that the ZnO coating layer decrease the initial capacities of LiNi1/3Co1/3Mn1/3O2 by increasing the surface layer resistances. However, the cycling performance of LiNi1/3Co1/3Mn1/3O2 was effectively improved by the ZnO coating layer.  相似文献   

18.
We have established that introducing a promoter (Pd) and modifying additives (La2O3, CeO2) into the composition of a Co3O4/cordierite catalyst leads to an increase in its activity and selectivity during reduction of oxygen by hydrogen in the presence of nitrogen(II) oxide.  相似文献   

19.
A novel disk-like shape of Co3O4 with high porosity was synthesized by a facile hydrothermal approach followed by calcination at 485 °C for 2 h. In order to further confirm the crystal structure, morphology, particle size, surface area, and porosity of the sample, a series of corresponding characterization techniques were used. The disk-like shape of Co3O4 as an anode delivered excellent rate capability such as 510.5 mAh g?1 at 4.0 C, which is much higher than the theoretical capacity of commercial graphite anode (372 mAh g?1). However, the electrode could not recover the high capacity during the long-term cycling at various higher current rates due to the deformation of the structure as confirmed by the ex situ studies. It is believed that the obtained remarkable structural feature with numerous void pores within the structure may be helpful for short-term cycling due to the large contact areas between the electrode and the electrolyte and a shorter diffusion length for lithium ion insertion but unable to act as a buffer to relax the volume expansion/contraction and alleviate the structural damage of the electrode during long-term cycling.  相似文献   

20.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号