首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A robust flow injection (FI) on-line dilution system based on micro-sample introduction was developed for flame atomic absorption spectrometry (FAAS). Two computer programmed and stepper-motor driven syringe pumps were used for the precise and reproducible sample metering in micro-liters and carrier delivery. Factors, which might influence the performance of the system, such as sample matrix and carryover, were investigated. No inferior effects were observed with various matrices including 10% glycerol. Sample carryover effects were less than 0.4%, tested by analyzing a blank and a sample alternately. Dilution factors were decided and keyed in manually. The system was calibrated using a set of concentrated standard solutions for a given dilution factor. At a sampling frequency of 60 h−1, precisions were better than 2% R.S.D. (n=40) for dilution factors of 10-2000. The long-term stability of the system was examined by continuously running the system for a whole working day, and a precision of 2.6% R.S.D. (n=345) was obtained at a dilution factor of 1000. The system was verified by analyzing a standard copper alloy with a certified concentration of 57.4% Cu, resulting in a measurement solution with 574 mg l−1 Cu.  相似文献   

2.
A simple and inexpensive procedure is proposed for the extension of the dynamic range of flame atomic absorption spectrometry measurements using on-line dilution. The proposed methodology is based on the use of a manifold with two coupled dilution chambers and a zone injection system. The samples are prediluted in a closed system which includes a variable-volume mixing chamber (10–120 ml) and two injection valves. The samples are injected through one of these valves, and the other is employed to take 100 μl of prediluted samples which are then passed through a new dilution chamber (volume 1–10 ml) and aspirated by the nebulizer of the instrument. A third injection valve mounted in the last part of the manifold is used for the direct injection of diluted standard solutions. Various dilution factors are obtained, ranging from 2 to 130 000 times, thus extending the analytical range of copper determination to more than 100 000 mg l−1.  相似文献   

3.
建立了流动注射在线同时分离富集,无火焰原子吸收法测定地球化学样品中金、铂、钯的分析方法。研究了联用技术并进行了吸附条件和解脱条件的优化实验。当采样频率为20样/h时,Au、Pt、Pd的富集倍数分别为43、37、41。Au、Pt、Pd的检出限(3σ)分别为5、16、9ng/L。将Au、Pt、Pd质量浓度分别为50、200、100ng/L的混合标准溶液平行测定7次,求得Au、Pt、Pd的相对标准偏差分别为3.6%、5.1%、4.7%。并对国家级标准样品进行了测定,其结果及精密度符合要求。  相似文献   

4.
In this work, a simple preconcentration system, achieved by replacing the sample tip of the autosampler arm by a micro-column packed with Amberlite IRA-910 or silica gel chelating resin functionalised with 1,5-bis(di-2-pyridyl)methylene tbiocarbohydrazide (DPTH-gel), is developed for the determination of Sb(V) and total antimony, respectively. Different factors including pH of sample solution, ionic strength, concentration and volume of eluent, sample flow rate, sample loading time and matrix effects for preconcentration were investigated. The method has been applied to the determination of antimony species in different samples.  相似文献   

5.
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values.  相似文献   

6.
In this work, a new chelating resin [1,5-bis (2-pyridyl)-3-sulphophenyl methylene] thiocarbonohydrazide immobilised on aminopropyl-controlled pore glass (550 A; PSTH-cpg) was synthesised and packed in a microcolumn which replaced the sample tip of the autosampler arm. The system was applied to the preconcentration of lead. When microliters of 10% HNO3, which acts as elution agent, pass through the microcolumn, the preconcentrated Pb(II) is eluted and directly deposited in a tungsten-rhodium coated graphite tube. With the use of the separation and preconcentration step and the permanent modifiers, the analytical characteristics of the technique were improved. The proposed method has a linear calibration range from 0.012 to 10 ng ml(-1) of lead. At a sample frequency of 36 h(-1) with a 90 s preconcentration time, the enrichment factor was 20.5, the detection and determination limits were 0.012 and 0.14 ng ml(-1), respectively and the precision, expressed as relative standard deviation, was 3.2% (at 1 ng ml(-1)). Results from the determination of Pb in biological certified reference materials were in agreement with the certified values. Seawaters and other biological samples were analysed too.  相似文献   

7.
The application of an on-line metallic alloy dissolution system using anodic electrodissolution in a flow injection system for the determination of tin and nickel in copper alloys is described. After the electrolyzed material was collected in the autosampler cup, determination was carried out using electrothermal atomic absorption spectrometry (ETAAS). Using specific software developed in Turbo Pascal 7.0, it is possible to control electrolysis time, intensity of the applied current, and triggering of the three-way solenoid valves that push the fluids. Through manipulation of these variables, it is possible to adjust the analytical signal to within the working range of the spectrometer. Calibration of the spectrometer was accomplished by processing reference material. For tin, relative standard deviations for a series of measurements (n=5) performed on the same point and on different points of the sample was smaller than 2 and 4%, respectively; for nickel, 2 and 5%, respectively. The results for tin and nickel were in good agreement with those obtained through application of the classical methodology, as well as with data obtained by optical emission spectrometry. The detection limit for tin was 0.001% (w/w), whereas for nickel it was 0.003% (w/w). The analytical throughput is 30 samples h−1.  相似文献   

8.
A flow injection (FI) on-line solvent extraction system for electrothermal atomic absorption spectrometry (ETAAS) was developed with nickel as a model trace element. The nickel pyrrolidine-dithiocarbamate chelate was extracted on line into isobutyl methyl ketone, which was delivered into the FI system by a peristaltic pump equipped with poly(tetrafluoroethylene) tubing. The organic phase was separated from the aqueous phase by a novel gravity phase separator with a small conical cavity, and stored in a collector tube, from which 50 μl organic concentrate was introduced into the graphite tube by an air flow. ETAAS determination of the analyte was performed in parallel with the extraction process. An enrichment factor of 25 was obtained in comparison with 50 μl direct introduction while achieving a detection limit of 4 ng l−1 (3σ), and a precision of 1.5% relative standard deviation for 1.0 μg l−1 nickel (n = 11). The proposed method was successfully applied to the determination of nickel in body fluids and other biological samples.  相似文献   

9.
Burguera JL  Burguera M  Rondón C 《Talanta》2002,58(6):1167-1175
An on-line flow injection (FI) precipitation–dissolution system with microwave-assisted sample digestion has been developed for the electrothermal atomic absorption spectrometry (ETAAS) determination of trace or ultratrace amounts of molybdenum in human blood serum and whole blood samples. After the exposure of the sample to microwave radiation, the on-line precipitation of molybdenum was achieved by the merging-zone of a 0.5-ml plug of sample with a plug of potassium ferrocyanide, which were carried downstream with a solution of 0.5 mol l−1 of HNO3. The interfering effects of iron and copper were minimized by the introduction of a flow of a 5% (w/v) sodium potassium tartrate (for iron) and 2% (w/v) of thiourea (for copper and zinc) in a 5% (v/v) ammonia and 2% (v/v) ammonium chloride solution previous to the precipitation reaction. The reddish-brown precipitate of molybdenyl ferrocyanide was collected on the walls of a knotted reactor. The precipitate was dissolved with the introduction of 1 ml of a 3.0 mol l−1 NaOH solution and the best performance in terms of detection limit and precision was achieved when a sub-sample of 140 μl was collected in a capillary of a sampling arm assembly, to introduce 20 μl volumes into the atomizer by means of positive displacement with air through a time-based injector. A detection limit (3σ) of 0.1 μg Mo l−1 using an aqueous standard solution was obtained. The method is quantitative and is applied over the range 0.2–20.0 μg Mo l−1. The precision of the method evaluated by ten replicate analyses of aqueous standard solutions containing 0.5 and 1.0 μg Mo l−1 was 2.8 and 3.1% (relative standard deviation, RSD) (for n=5), respectively. Whereas, the precision evaluated by five replicate analysis of a serum and a whole blood sample were 3.3 and 3.8% RSD. An enrichment factor of ca. 3.5 was achieved with the introduction of 0.5 ml aqueous standard solutions at a sample flow rate of 1.0 ml min−1. Recoveries of spiked molybdenum in blood serum and whole blood were in the ranges 96–102 and 94–98%, respectively. The results obtained for two human whole blood certified reference materials were in good agreement with the indicative values.  相似文献   

10.
Flow field-flow fractionation (Fl-FFF) with off-line electrothermal atomic absorption spectrometry (ETAAS) detection was developed and employed for particle size characterization of Ag NPs stabilized by citrate, pectin, and alginate. Citrate stabilized-Ag NPs were prepared from sodium borohydride reduction of silver nitrate. Sodium citrate was used as the capping agent to stabilize Ag NPs and prevent the aggregation process. Pectin stabilized- and alginate stabilized-Ag NPs were prepared from ascorbic acid reduction of silver nitrate. Pectin and alginate were used as the capping agent for pectin stabilized- and alginate stabilized-Ag NPs, respectively. Three types of Ag NPs were characterized by using FlFFF, zeta potentiometer, and TEM technique. The mean particle sizes of Ag NPs as characterized by FlFFF were 9 nm, 19 nm, and 45 nm for citrate stabilized-, pectin stabilized-, and alginate stabilized-Ag NPs, respectively, in deionized water. Further, FlFFF with ETAAS detection was employed to observe the aggregation of Ag NPs of various types in environmental water in the absence and presence of humic acid. Citrate stabilized-Ag NPs underwent aggregation more rapid than the pectin stabilized- and alginate stabilized-Ag NPs as the latter two types were sterically stabilized. Further, humic acid could prolong the stability of Ag NPs in the environment.  相似文献   

11.
A new and simple flow injection system procedure has been developed for the indirect determination of cyanide. The method is based on insertion of aqueous cyanide solutions into an on-line cadmium carbonate packed column (25% m/m suspended on silica gel beads) and a sodium hydroxide with pH 10 is used as the carrier stream. The eluent containing the analyte as cadmiumcyanide complexes, produced from reaction between cadmium carbonate and cyanide, measured by flame atomic absorption spectrometry. The absorbance is proportional to the concentration of cyanide in the sample. The linear range of the system is up to 15 mg L−1 with a detection limit 0.2 mg L−1 and sampling rate 72 h−1. The method is suitable for determination of cyanide in industrial waste waters with a relative standard deviation better than 1.22%.  相似文献   

12.
Iron was extracted on-line from solid meat samples by a simple and rapid continuous ultrasound-assisted extraction system (CUES). The CUES is connected to a flow injection manifold, which allows the on-line flame atomic absorption spectrometric determination of iron. A Plakett–Burman design was used for the optimisation of the CUES. The method achieved a total sampling frequency of 11 samples per hour with a relative standard deviation for the complete procedure of 0.4%. The detection limit was 0.6 g g–1 (dry mass) for a sample amount of 30 mg. Accurate results were obtained by measuring the certified reference materials BCR-186 (pig kidney) and BCR-184 (bovine muscle). The analytical procedure was applied to different real meat samples with satisfactory results.  相似文献   

13.
Lima EC  Brasil JL  Vaghetti JC 《Talanta》2003,60(1):103-113
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W-Rh, W-Ru, W-Ir) permanent modifiers thermally deposited on the integrated platform of transversally heated graphite atomizer were employed for the determination of arsenic in sludges, soils, sediments, coals, ashes and waters by electrothermal atomic absorption spectrometry. Microwave digests of solid samples and water samples were employed for obtaining the analytical characteristics of the methods with different permanent modifiers. The performance of the modifiers for arsenic determination in the real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for the analyte determinations in simpler matrices such as waters (recoveries of certified values 95-105%), but the analyte recoveries of certified values in sludges, soils, sediments, coals, and ashes were always lower than 90%. On the other hand, for the determination of arsenic, using W-Rh, W-Ru, and W-Ir permanent modifiers presented recoveries of certified values within 95-105% for all the samples. Long-term stability curves obtained for the determination of arsenic in environmental samples with different permanent modifiers (Rh, Ir, Ru, W-Rh, W-Ir, W-Ru) showed that the improvement in the tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 35% longer when compared with single permanent modifier. The results for the determination of As employing different permanent modifiers in the samples were in agreement with the certified reference materials, since no statistical differences were found after applying the paired t-test at the 95% confidence level.  相似文献   

14.
A solvent impregnated hollow fibre (SIHF) module has been developed for the preconcentration of lead by using bis(2-ethylhexyl) phosphoric acid (DEHPA) dissolved in kerosene as extractant. The module has been designed for an on-line determination of trace amounts of lead(II) at mg l−1 (ppm) level by flame atomic absorption spectrometry (FAAS).

The SIHF system is based on the metal liquid–liquid distribution between aqueous solutions of different acidity and the mentioned organic solution. The highest enrichment factor of Pb(II) was determined at pH=4.0 using a formic acid/formiate buffer solution.

Preconcentration experiments were carried out at low lead(II) concentration (mg l−1 level) by using the SIHF module. This study includes the influence of hydrodynamic and chemical conditions on the loading and elution of Pb(II) on the SIHF, i.e., flow rate through the fibres, acidity of the eluent (as nitric acid concentration) and the chemical nature of the acid used in the elution. Breakthrough curves were determined for different sampling flow rates, 0.54 ml min−1 was selected to minimise the loading volume of Pb(II) sample. 0.1 M nitric acid was chosen as eluent solution, and perchloric acid also shows appropriate elution characteristics. The degree of concentration obtained for Pb(II) are of 10 fold the original concentration. The quantification limit for Pb(II) achieved with this preconcentration system is 0.17 mg l−1.

The results obtained indicate that the SIHF system can be applied for on-line determination of trace amounts of lead(II) by FAAS.  相似文献   


15.
采用单阀双阳离子交换树脂微柱并联,设计了双路采样逆向洗脱在线分离富集系统,该系统与原子吸收测量技术相结合,实现了在线分离富集-火焰原子吸收光谱法同时测定水中Cr(Ⅲ)和Cr(Ⅵ),富集1min时,分析速度为60样/h,测定Cr(Ⅲ)和Cr(Ⅵ)的特征浓度分别为6.08μg/L和11.58μg/L(相当于1%吸收),线性范围分别为0~1.0μg/mL和0~2.0μg/mL,对质量浓度为100μg/L的Cr(Ⅲ)和Cr(Ⅵ)测定的相对标准偏差分别为2.9%和3.0%、检出限分别为8.70和10.8μg/L。该法对实际水样加标回收率在94.5%~104.3%之间。  相似文献   

16.
In the present mini-review, an account of the actual state-of-the-art and future possibilities offered by on-line ET-AAS is presented. Topics such as: (1) on-line analyte preconcentration (by means of precipitation, sorption, solvent extraction, and solid phase extraction); (2) analyte separation by means of chromatography, and electrochemical, microdialysis and chemical vapor generation processes; and (3) sample treatment (by microwave sample digestion, sample emulsification and dilution processes) are used to illustrate the versatility of flow injection, sequential injection analysis, stop flow and continuous flow, when coupled to a graphite furnace. The use of some of the on-line systems for speciation and the simultaneous determination of different analytes is underlined.  相似文献   

17.
A solid sampling electrothermal atomic absorption spectrometry method for direct determination of trace silicon in biological materials was developed and applied to analysis of pork liver, bovine liver SRM 1577b and pure cellulose. The organic matrix was destroyed and expelled from the furnace in the pyrolysis stage involving a step-wise increasing the temperature from 160 °C to 1200 °C. The mixed Pd/Mg(NO3)2 modifier has proved to be the optimum one with respect to the achievement of maximum sensitivity, elimination of the effect of the remaining inorganic substances and the possibility of using calibration curves measured with aqueous standard solutions for quantification. For the maximum applicable sample amount of 6 mg, the limit of detection was found to be 30 ng g− 1. The results were compared with those obtained by different spectrometric methods involving sample digestion, by electrothermal atomic absorption spectrometry using slurry sampling, by wavelength dispersive X-ray fluorescence spectrometry and by radiochemical neutron activation analysis. The method seems to be a promising one for analysis of biological materials containing no significant fraction of silicon in form of not naturally occurring volatile organosilicon compounds. The still incessant serious limitations and uncertainties in the determination of trace silicon in solid biological materials are discussed.  相似文献   

18.
An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium pyrrolidinedithiocarbamate (APDC) in citrate buffer and the chelate is extracted into isobutyl methyl ketone (IBMK), which is separated from the aqueous phase by means of a newly designed dual-conical gravitational phase separator. A metered amount of the organic eluate is aspirated and stored in the PTFE holding coil (HC) of the SI-system. Afterwards, it is dispensed and mixed with an aqueous back extractant of dilute nitric acid containing Hg(II) ions as stripping agent, thereby facilitating a rapid metal-exchange reaction with the APDC ligand and transfer of the Cd into the aqueous phase. The aqueous phase is separated in a second dual-conical gravitational phase separator, and 30 μl of it is entrapped and metered in a sample loop (SL) and subsequently introduced via air segmentation into the graphite tube for analyte quantification. The ETAAS determination is performed in parallel with the separation/preconcentration process of the ensuing sample. An enrichment factor of 21.4, a detection limit of 2.7 ng l−1, along with a sampling frequency of 13 h−1 were obtained at a sample flow rate of 6.0 ml min−1. The precision (R.S.D.) at the 0.4 μg l−1 level was 1.8% as compared to 3.2% when quantifying the organic extractant directly. The applicability of the procedure is demonstrated for the determination of trace levels of cadmium in three certified reference materials.  相似文献   

19.
An electrothermal atomic absorption spectrometry (ETAAS) with polarized Zeeman background correction was used for determining selenium in petroleum refinery aqueous streams containing large amounts of volatile unknown organic compounds. Some parameters that might affect the measurement were investigated such as the amount of matrix modifier added, the temperature program and the calibration mode employed. Obtained results indicate that, in this kind of sample, selenium must be determined by standard addition procedure with a careful control of the dry step temperature and ramp pattern. Also, the results show that 2.5 μg of Pd must be added as matrix modifier to stabilize the analyte in the range of 2-20 ng Se. In order to evaluate the accuracy of the procedure, selenium was determined in 18 samples by ETAAS and hydride generation atomic absorption spectrometry (HGAAS) (as reference methodology). In both techniques the results agreed well.  相似文献   

20.
This article describes an on-line pre-concentration system for zinc determination in environmental samples by flame atomic absorption spectrometry (FAAS). It was based on the sorption of zinc(II) ions in a minicolumn of polyurethane foam loaded with 4-(2-pyridylazo)-resorcinol (PAR). The optimisation step was carried out using two-level full factorial and a Doehlert design. Three variables (sampling flow rate, buffer concentration and pH) were regarded as factors in the optimisation. Results of the two-level full factorial design 23 for 8 runs (in duplicate) based on the Analysis of Variance (ANOVA) demonstrated that all the factors in the tested levels are statistically significant. Besides, the interaction (sampling flow rate×buffer concentration) was also statistically significant. A three-variables Doehlert design was applied in order to determine the best condition for pre-concentration and determination of zinc. The validation process was assessed as: parameters of the analytical curve, precision, effect of other ions in the proposed system, robustness test and accuracy. The proposed system allowed determination of zinc with detection limit (3σ/S) of 0.28 μg l−1, and a precision (reproducibility), calculated as relative standard deviation (R.S.D.) of 10.0 and 3.7% for zinc concentration of 1.0 and 5.0 μg l−1, respectively. The achieved pre-concentration factor was 91.23 and the sampling frequency was 48 samples per hour. The achieved recovery for zinc determination in presence of several cations demonstrated that this procedure could be applied for analysis of water samples. The accuracy was confirmed by analysis of three certified reference materials. This procedure was applied for zinc determination in several kinds of water samples including saline aqueous waste from oil Refinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号