首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of rhenium(I) diynyl complexes [Re(CO)3(N–N)(CC--CCH)] [N–N = tBu2bpy (1), bpy (2)] with Co2(CO)8 in THF yielded a new class of luminescent trinuclear rhenium–cobalt mixed-metal alkynyl complexes, [Co2{-HC2CC[Re(CO)3(N–N)]}(CO)6] [N–N = tBu2bpy (3), bpy (4)]. Their luminescence and electrochemical properties have also been studied.  相似文献   

2.
The reactions of hydrosilane and/or alkyne as well as isonitriles with rhodium and rhodium cobalt mixed metal carbonyl clusters, e.g., Rh4(CO)12 and Co2Rh2(CO)12, are studied. Novel mixed metal complexes, e.g., CoRh(CO)5 (HCCBu n ), (R3Si)2Rh(CO) n Co(CO)4, Rh(R–NC)4Co(CO)4, Co2Rh2(CO)10(HCCR), and Co2Rh2(CO)9(HCCBu n ), are synthesized and identified. The catalytic activities of these rhodium and rhodium-cobalt mixed metal complexes are examined in hydrosilyation, silylformylation, and novel silylcarbocyclization reactions. Possible mechanisms for these reactions are proposed and discussed.  相似文献   

3.
Conclusions The reaction of iron carbonyls with sodium alkylthiolates proceeds by redox-disproportionation through one-electron transfer to form the Fe2(CO)8 , Fe3(CO)11 Fe4(CO)13 , and Fe3(CO)12 radical-anions. Fe2(CO)6(SR)2 and Fe3(CO)9(SR)2 radical-anions are paramagnetic analogs of the reaction products, Fe2(CO)6(SR)2 and Fe3(CO)9(SR)2, and were detected by ESR spectroscopy.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1652–1654, July, 1987.  相似文献   

4.
Diyne FcCmCC.CFc (Fc is ferrocenyl) reacts with Ru3(CO)12 in boiling hexane to yield binuclear complexes Ru2 and Ru2(CO)6(C4Fc2(C=CFc)2C=O) containing ruthenacyclopentadiene and diruthenacycloheptadienone rings, respectively. The isomerism of the complexes is due to the different ways of coupling of the alkyne fragments of the diyne, namely, head-to-head, head-to-tail or tail-to-tail. The reaction of enyne PhC=CCH=CHPh with Ru3(CO)12 under similar conditions gives isomeric binuclear complexes Ru2(CO)6(C4Ph2(CH=CHPh)2) and trinuclear clusters Ru3(CO)6(w-CO)2(C4Ph2(CH=CHPh)2) and Ru3(CO)8(3-,1-1-4-2 C4Ph2(CH=CHPh)2). The structure of the latter was determined by X-ray diffraction analysis. The Ru3 triangle coordinates eight terminal CO groups and the organic ligand resulting from the head-to-head dimerization of enyne molecules; the ruthenacyclopentadiene moiety is 4-coordinated to the Ru(CO)2 group, and the third ruthenium atom is 2-bound to one of the PhCH=CH groups.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1261–1267, May, 1996.  相似文献   

5.
Ni(II) and Co(II) complexes with deprotonated paramagnetic enaminoketones 4(3,3,3trifluorine2oxopropylidene) 2,2,5,5tetramethyl3imidazolidine1oxyl (L) and 4(3,3,3trifluorine1chlorine2oxopropylidene)2,2,5,5tetramethyl3imidazolidine1oxyl (L1) and alcohols are shown to form continuous solid solutions NixCo1-xL2(C2H5OH)2 and NixCo1-xL2 1(CH3OH)2. Single crystal Xray diffraction analysis showed that concentration variation practically does not affect the structural characteristics of the solid solutions. Distinguishing features if the magnetic behavior of NixCo1-xL2 · (C2H5OH)2 and NixCo1-xL2 1(CH3OH)2 are the antiferromagnetic interaction of the moments of the nickel and cobalt sublattices inside the polymeric layers and the antiferromagnetic nature of interlayer interaction of the magnetic moments.  相似文献   

6.
Summary Os2(CO)8Cl2 (1) is orthorhombic P212121 witha=9.3599(9),b=9.879(2),c=16.014(3), V=14803, Dc=3.03 Mgm–3 for Z=4. Structure solved by Patterson methods. Final R=0.038, Rw=0.038 [w=(2F)] for 1270 observed reflections and 141 parameters. Os3(CO)12Cl2 (2) is monoclinic C2/m witha=12.105(3), b=10.612(3),c=8.798(1) , =117.02(2)°, V=10063, Dc=3.22 Mgm–3 for Z=2. Structure solved by Patterson methods. Final R=0.036, Rw=0.037 (w=(2F)) for 821 observed reflections and 75 parameters.Complex(1) has an osmium-osmium single bond 2.897(1), with the chloride ligands in equatorial positions,(2) has a linear triosmium chain with osmium-osmium single bonds 2.893(1) and the chloride ligands occupy equatorial sites on the terminal osmium atoms. Both(1) and(2) are isostructural with their osmium carbonyl iodide analogues.  相似文献   

7.
The reaction of K[Co(CO)4] and PCl2(TMP) at –5°C leads to the unstable and reactive -phosphinidene complex [Co2(CO)6{-P(TMP)}] (1), while the same reaction carried out at 35°C gives the chlorophosphido and phosphinidene bridged cluster [Co3(CO)7{-P(Cl)TMP}{ 3-P(TMP)}] (2) (TMP=2,2,6,6-tetramethylpiperidyl). Compound 1 reacts with dppm (dppm=bis(diphenyl- phosphino)methane) and [Co2(CO)8] to form the more stable substitution product [Co2(CO)4{-P(TMP)}(-dppm)] (3) and [Co4(CO)7(-CO)3{ 3-P(TMP)}] (4) respectively. The first example of a cationic 3-phosphinidene cluster compound [Co3(CO)9{ 3-P(TMP)}][AlCl4] (5) is obtained from reaction of 3 with AlCl3. The X-ray structures of clusters 2 and 5 are discussed.  相似文献   

8.
Carbonyl exchange of Fe3(3-S)2(CO)9 wioth1,1-bis(diphenylphosphino)ferrocene (dppf) in refluxing THF gives a cluster ligand with a pendant phosphine moiety, Fe3(3-S)2(CO)8 (gn1-Ph2PlC5H4)Fe(C5H4)P4 MePh2)]1 ,4. Addition of 1 to AuCl(SMe2) gives ClAu(-dppf) Fe4(3-S)2(CO)8,8 (45%). Spectroscopic evidence is also obtained for (OC)8 (3-S)2Fe3(-dppf) Os3(CO)11,7 and PdCl2[(-dppf)Fe3(3-D)2(CO)8]2,9, from1 and Os3(CO)11(CH3CN) and PdCl2CN)2, respectively. Crystal data dor3: space group P21/n,a = 10.891(3) Å,b = 19.939(3) Å,c = 20.443(2) Å, 100.17(2)°.Z = 4, 3917 reflections,R = 0.049.  相似文献   

9.
ESR studies of X(CuO)·V2O5·8.3 MoO3 (X=1–2) calcined in flowing nitrogen at 250–350 °C have revealed the exchange interaction of Cu2+ and V4+ ions that form a paramagnetic system.
X(CuO) V2O5·8,3 MoO3, X=1–2, , 250–350°C, Cu2+ V4+, .
  相似文献   

10.
Reaction of the iron chalcogen carbonyl clusters Fe2(CO)6(-EE) and Fe3(CO)9(3-E)(3-E), [E=Se, Te;E=S, Se, Te] with various inorganic and organic moieties produce a number of higher nuclearity clusters. The reactivity pattern of these iron chalcogen carbonyl compounds and the structure of the products formed are discussed.  相似文献   

11.
Summary [(-C5H5)Fe(NO)(CO)]2 and (-C5H5)Fe(NO)(CO)I are formed when a slow stream of NO is passed through a benzene solution of [(-C5H5)Fe(CO)2]2 and (-C5H5)Fe(CO)2 I respectively. Similarly NO reacts with (-C5H5)Fe(CO)(Ph3E)I and [(-C5H5)Fe(CO)2(Ph3E)]I, where E = P, As and Sb, to give (-C5H5)Fe(NO)(Ph3E)I and [(-C5H5)Fe(NO)2(Ph3E)]I respectively. The complexes were characterized by elemental analyses and i.r. spectra.Reprints of this article are not available.  相似文献   

12.
Low temperature photolysis ofM(CO)5 (M=Ru, Os) provides efficient synthesis for a variety ofM(CO)4(2-alkyne) derivatives. The molecules show surprising reactivity toward other 18-electron transition metal carbonyl compounds (M(CO)5 and CpM(CO)2,M=Co, Rh, Ir) to give homo- and heterodimetallacyclic complexes. The general features of the condensation reactions are described, the structures of the compounds discussed, and a few illustrative examples of the transformation of the bridging organic units given.  相似文献   

13.
Summary Polymetallic solid solutions of the ethylenediaminetetracetic acid (EDTA) and six divalent metal ions exist in the range: MgMnCoZnNiCu(EDTA) · 6H2O where + + + + + =2, 01, 0,,2, 0, 1.This type of structure is characterized by the presence of two different octahedral carboxylate-bridged coordination sites forming infinite zig-zag chains. Visible and i.r. spectra and t.g.a. analysis show that there is occupational preference for the two coordination sites in the crystalline structure.Due to this preference, and also to the structural features, the heterobimetallic MM(EDTA) · 6H2O compounds constitute a structurally new class of materials which can be described as ordered alternating-heterobimetallic polymeric coordination complexes.  相似文献   

14.
Os5(-X)2(CO)16(L)2 (X=Cl, 1, Br; L=CNBu t ) clusters have been prepared by the reaction of Os3(-X)2(CO)10 with Os(CO)4(L) at a 1:2 molar ratio in solution at 60°C. The crystal structure of the chloro compound reveals that the Os3(-Cl)2 fragment present in the precursory cluster is maintained in 1 with a coordination site cis to the Cl ligands occupied by the unusual Os(CO)4Os(CO)3(L)2 unit. The resulting hook arrangement of the Os5 skeleton has not been observed previously. The OsOs lengths are in the range 2.8384(6)–2.8999(6)Å. The OsOs bonds associated with the pendant fragment are both considered dative bonds.  相似文献   

15.
Studies on C-C bond formation between simple hydrocarbon species such as CH2, C=CH2, CH=CH2, CH2=CH2, CH2=C=CH2 and CHCH at a diruthenium center suggest that the process is promoted when the dimetal center can readily compensate for the two electrons lost in the formation of the new C-C bond. Thus, whereas -CH2 and ethene combine only under forcing conditions, the combination of -CH2 with allene or ethyne, which have additional -electrons available for coordination, occurs readily at room temperature. Likewise, the availability of uncoordinated -electrons in -C=CH2 allows vinylidene to link rapidly with ethene at room temperature. Alkyne complexes [Ru2(CO)(-RCCR)(-C5H5)2] (R=CF3 or Ph) react only under vigorous conditions with additional alkyne to give [Ru2(CO)(-C4R4) (-C5H5)2], but give these same species at room temperature in the presence of acid, shown to be due to the intermediacy of highly reactive 30-electron -vinyl cations. Thermally, alkyne linking proceedsvia three-alkyne species [Ru2(-C6R6)(-C5H5)2] to a four-alkyne complex [Ru2(-C8R8)(-C5H5)2], containing an unprecedented C8 ligand composed of a C6 ring with a C2 tail. Treatment of [Ru2(CO)(-RCCR)(-C5H5)2] with unsaturated metal fragments gives trimetal complexes such as [Ru3(CO)5(3-CF3CCCF3) (-C5H5)2]. The MeCN derivative of this species undergoes unusual linking processes on reaction with additional alkyne to giveinter alia [Ru3(CO)3(3-CCF3){3-C3(CF3)3}(-C5H5)2], arising from alkyne cleavage, and [Ru3(CO)3{3-C4(CF3)2(CO2Me)2}(-C5H5)2], a closo-pentagonal bipyramidal Ru3C4 cluster.  相似文献   

16.
The reaction of a trinuclear cobalt cluster [ClCCo3(CO)9] with [Mo(CO)3(CH3CN)3] gave a molybdenum–cobalt bimetallic cluster complex [Mo3Co3( 6-C)(-CO)3(CO)15]. The cluster anion has a carbide-centered Mo3Co3 octahedral metal core, where the three molybdenum and three cobalt atoms are placed in facial positions. The six metal atoms are coordinated by only carbonyl ligands. The cluster is suitable for a model of heterogeneous desulfurization catalysts.  相似文献   

17.
Triosmium cluster Os3(-H)(CO)10(--2-CCC Me2OMe) (1) was obtained by treating OS3(-H)(-Cl)(CO)10 with LiCCCMe2OMe. The reaction of cluster1 with HBF4 · Et2O at –60 °C leads to the cationic complex [Os3(-H)(CO)10(-,,2-C=C=C Me2)]+BF4 (2) with an allenylidene ligand. Thes1H and13C NMR spectra of complex2 reveal the temperature dependence caused by migration of hydrocarbon and carbonyl ligands. Thermodynamic parameters were obtained for be exchange process of the allenylidene ligand.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp, 2990–2992, December, 1996.  相似文献   

18.
Summary Equimolar quantities of CrCl3 · 3THF and-diketones, -dkH, react to yield CrCl2(-dk) · 2THF and CrCl2(-dk) · THF complexes in coordinating and noncoordinating solvents respectively. For 1 : 2 and 1 : 3 molar ratios of reactants, derivatives of general formulae CrCl(-dk)2 and Cr(-dk)3 (where-dkH = acerylacetrrnc, benzoylacetonc and dibenzoylmethane) have been isolated. All complexes have been characterized by elemental analysis, molecular weights and by i.r. spectra.  相似文献   

19.
Reaction of the pentanuclear cluster [Os5C(CO)14(PPh2py)] in CH2Cl2 with 1.2 equivalents of Pd(MeCN)2Cl2 led to the high-yield synthesis of the new osmium–palladium carbonyl cluster [Os5PdC(CO)14(-Cl)Cl(-PPh2py)] 1. Cluster 1 is thermally unstable and converts slowly in refluxing CHCl3 to [{Os4C(CO)10(-Cl)(-PPh2py)}(4-Pd){Os4C(CO)12(-Cl)}] 2 and [{Os4 (5-C)(CO)12(-Cl)}2(-Pd2Cl2)] 3 in 4% and 67% yield, respectively. Reaction of 1 with iodine gave [Os5PdC(CO)14(-Cl)I(-PPh2py)] 4 and [{Os4(5-C)(CO)12(-I)}2(-Pd2I2)] 5 in moderate yields. All complexes have been characterized by spectroscopic and single-crystal X-ray diffraction analysis.  相似文献   

20.
Xu  Feng  Chen  Yong-Mei  Yang  Shi-Yan  Sun  Wen-Hua  Yu  Kai-Bei 《Transition Metal Chemistry》2000,25(1):108-111
CpMoFeCo(CO)7(3-S) reacts with Cp*M(CO)3Cl or CpM(CO)3Cl (M=W, Mo) to gave the mixed-metal clusters Cp*WCpMoFe(CO)7(3-S) (1), Cp*MoCpMoFe(CO)7(3-S) (2), CpWCp*MoFe(CO)7(3-S) (3), CpMoCp*MoFe(CO)7(3-S) (4) and Cp*WCp*MoFe(CO)7(3-S) (5). The title clusters have been characterized by i.r., 1H/13C-n.m.r. spectroscopy and their compositions have been confirmed by elemental analyses. The X-ray crystal structure analysis shows the two independent enantiomeric molecules of clusters (1) in one crystal structure unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号