首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Maurer和Prausnitz的凝胶相平衡条件,建立了凝胶的溶胀模型.模型假设凝胶是以凝胶组分及凝胶吸收的溶液为核心,以弹性半渗透膜为壳的复合体.并采用UNIQUAC方程计算凝胶相及与之共存液相的Gibbs过剩自由能,采用“phantomnetwork”理论计算凝胶的弹性自由能,采用“自由体积”计算分子的尺度效应.同时以N-异丙基丙烯酰胺(IPAAm)为单体合成了IPAAm凝胶.研究了25 ℃时IPAAm凝胶在丙酮水溶液中的溶胀行为,并测定了丙酮在胶体相和与之共存液相中的分配,以检验模型的关联与预报能力.结果表明,模型预报的单体总量和交联剂浓度对凝胶溶胀的影响与实验符合得很好.而且凝胶溶胀时,能很好地预测丙酮在两相中的分配,表明模型具有很好的关联和预报能力.  相似文献   

2.
Hydrogels are three-dimensional networks of hydrophilic polymer chains. Hydrogels can absorb/desorb water and hydrophilic solutes. This behavior is called swelling/shrinking, as it is accompanied by a volume change. The amounts of absorbed substances depend on the structure of the hydrogel and the composition of the coexisting liquid phase. This paper deals with experimental investigations of the swelling behavior of nonionic, chemically crosslinked, synthetic hydrogels of N-isopropyl acrylamide. The swelling equilibrium of some hydrogels in aqueous solutions of sodium chloride was investigated at 298 K. The experimental results are presented, discussed and correlated/predicted with a thermodynamic model which combines an expression for the Gibbs energy of a liquid phase with an expression for the Helmholtz energy of an elastic network.  相似文献   

3.
Monodisperse hydrogel beads composed of calcium alginate and crosslinked polyNIPAAm (N-isopropylacrylamide) were synthesized based on a simultaneous interpenetrating network process. With increasing the temperature above the phase transition temperature of polyNIPAAm, a core-shell type of hydrogel beads was developed; polyNIPAAm-enriched core region and Ca-alginate-enriched outer shell layer were observed. The thermally reversible formation of the core-shell double structure in the IPN hydrogel beads was applied for the temperature modulated drug release using indomethacin as a model drug.  相似文献   

4.
A new method was proposed to prepare binary composite colloidal crystal hydrogels by interlocking the as-prepared polystyrene/sulfonated polystyrene core/shell colloidal crystal hydrogel with a second responsive gel. The shell thickness thus the core size were synchronously controlled by altering the sulfonation time and temperature. The proper monomers were radically polymerized forming the second gel within the first gel network. The composition and structure were confirmed. Nanopatterued hydrogel including porous bulk hydrogels and surface patterned hydrogels were derived by properly treating the binary composite hydrogels. Specially, some typical patterns such as arrays of “nano-bowls” ,arrays of “nano-ribbons” and “nano-mask” were achieved by changing the treatment method such as by immersion in the solvent, after solvent evaporation from the sample surface during high rate rotation. This work provides a method to prepare nanopatterued hydrogels.  相似文献   

5.
Biodegradable microparticles are promising for the sustained release of encapsulated lipophilic drugs. In particular, the microparticles with uniform size show excellent linearity of cumulated release over time with minimized initial burst. Here, we encapsulate the biodegradable microparticles with a hydrogel shell to improve the controllability over the sustained release and suspension stability. With a capillary microfluidic device, monodisperse oil-in-water-in-oil (O/W/O) double-emulsion droplets are produced to have a toluene solution of polylactic acid (PLA) in the core and sodium alginate and calcium-ethylenediaminetetraacetic acid (EDTA) complex in the shell, whereas the continuous oil phase contains acetic acid. As the toluene evaporates, PLA consolidates to form a microsphere in the core. At the same time, acetic acid diffuses from the continuous phase to the water layer, which causes the dissociation of the Ca-EDTA complex and the gelation of alginate. The hydrogel-shelled PLA microspheres are transferred from the oil to an aqueous solution of calcium chloride, which further tightens the gel shell. The resulting core-shell microspheres show sustained release of encapsulants for extended periods as the hydrogel shell serves as a diffusion barrier. Moreover, the hydrogel shells prevent interparticle agglomeration and adhesion to the solid walls, securing high suspension stability during the injection.  相似文献   

6.
Cao  Qing-Chen  Wang  Xing  Wu  De-Cheng 《高分子科学》2018,36(1):8-17
Hydrogels are a kind of unique cross-linking polymeric materials with three-dimensional networks.Various efforts have been devoted to manipulate the formation of functional hydrogels in situ and enrich the production of hydrogels,microgels and nanogels with improved modulation capacity.However,these methods always fail to tune the gel properties because of the difficulty in achieving the precise control of cross-linking extents once the gel formation is initiated.Therefore,the preparation of tailor-made hydrogels remains a great challenge.Herein,we summarize a controlled cross-linking strategy towards not only fabrication of hydrogels at nano-,micro-and macro-scales,but also achievement of controlled assembly of nanoparticles into multifunctional materials in macroscopic and microscopic scales.The strategy is conducted by controllably activating and terminating the disulfide reshuffling reactions of disulfide-linked core/shell materials with selective core/shell separation using system pH or UV triggers.So it provides a facile approach to producing hydrogels,hydrogel particles and nanoparticle aggregates with tunable structures and properties,opening up the design possibility,flexibility and complexity of hydrogels,microgels/nanogels and nanoparticle aggregates from nanoscopic components to macroscopic objects.  相似文献   

7.
The preparation of nonspherical materials composed of separated multicomponents by droplet‐based microfluidics remains a challenge. Based on polymerization‐induced phase separation and droplet coalescence in microfluidics, we prepared emulsions of variously shaped PAM/PEG core/shell droplets and hydrogels composed of two separated components, which show flexible and transformable hierarchical structures and microarchitectures. We find that AM/PEG aqueous droplets form a core/shell structure after polymerization resulting from phase separation. Thus multicore/shell droplets are easily produced by coalescence of core/shell structures. By changing the polymerization temperature and the flow rate, the morphology of the multicore droplets and the hydrogel can be easily adjusted. The hydrogels exhibit apparent anisotropy and different protein release rates depending on their structures. The preparation technique is simple and versatile and the resulting hydrogels have potential applications in many fields.  相似文献   

8.
The authors present a novel computational approach to simulate both the release of nanoparticles from a microcapsule, which is moving through a microchannel, and the adsorption of the released particles onto the channel walls. By integrating the lattice spring model for the micromechanics of elastic solids and the lattice Boltzmann model for fluid dynamics, they simulate the relevant fluid-structure interactions in the system. In particular, they capture the dynamic interactions among the capsule's elastic shell, the encapsulated fluid, and the external, host solution. The nanoparticles are treated as "tracer particles" and their motion is modeled via a Brownian dynamics simulation. An imposed pressure gradient drives the capsule to move along an adhesive substrate and the particles are released from the surface of this mobile capsule. The authors determine how the elasticity of the capsule, the strength of the capsule-surface adhesion and the diffusion coefficient of the nanoparticles affect the relative amount of particles that are adsorbed onto the substrate. In addition to showing that the compliant nature of the capsule can significantly affect the nanoparticle deposition, they isolate a range of parameters for maximizing the adsorbed amount. The findings yield guidelines for optimizing the efficiency of microcapsule carriers in the targeted delivery of nanoparticles.  相似文献   

9.
Nanocomposite materials provide the possibility for multifunctional properties in contrast with their more-limited single-component counterparts. Here, we report the synthesis and characterization of the first all-inorganic core/shell hybrid magnetic-optical nanoparticle, cobalt/cadmium selenide. The core/shell nanocrystals are prepared in a facile one-pot reaction, and their microstructure is analyzed using low- and high-resolution transmission electron microscopy. Using magnetic and optical characterization, we demonstrate bifunctional behavior, whereby the core retains the magnetic properties of the starting Co nanoparticle, and the shell emits similarly to a single-component CdSe nanoparticle. Interestingly, while the coercivity was found to be unchanged by shell formation, the blocking temperature for the composite structure was observed to be substantially lower (Co: >350 K; Co/CdSe: 240 K). In addition, we observed that at low temperatures (20 K) shell CdSe photoluminescence (PL) decay was very rapid (<1 ns). In contrast, nanocrystalline CdSe PL decay is typically much slower at such temperatures (>50 ns). Finally, we propose possible explanations for the unusual magnetic and optical behavior of the core/shell hybrid nanostructures.  相似文献   

10.
Investigations dealing with fundamental aspects of the interaction between covalently cross-linked polyelectrolyte gels and oppositely charged surfactants are reviewed. For reference, a brief summary of results from recent studies of associative phase separation in linear polyelectrolyte/surfactant mixtures is also included. It is found that great progress has been made in several sub-areas since the first reports appeared in the early 1990's. The frequently observed surfactant-induced volume transition has been studied in detail. Its relation to associative phase separation in solutions and the important role of polyion-mediated micelle–micelle attractions have been clarified. Phase separation in gels, in particular core/shell structures, has been studied in great detail. The importance of network mediated elastic forces between two phases coexisting in the same gel has been demonstrated and some of their consequences have been clarified. Hydrophobic interactions between polyion and micelle have been found to have strong effects on both binding and swelling isotherms. The effect of salt, which has been found to sometimes disfavor, sometimes promote surfactant binding, is quite well understood. The microstructure of gels in the collapsed state has been studied in great detail and is often found to be highly ordered, resembling liquid crystalline phases common to surfactant/water systems. The kinetics of surfactant binding and the associated volume change has been investigated to some extent. Progress has been made for gels displaying phase separation during the volume transition.  相似文献   

11.
A nanoparticle in aqueous solution is modeled as a homogeneous elastic isotropic continuum sphere in contact with an infinite viscous compressible Newtonian fluid. The frequencies and damping of the confined vibrational modes of the sphere are calculated for the material parameters of a CdSe nanoparticle in water and a poly(methyl methacrylate) nanosphere in water. Although the effects of viscosity are found to be negligible for macroscopic objects, for nanoscale objects, both the frequency and damping of the vibrational modes are significantly affected by the viscosity of the liquid. Furthermore, both shear viscosity and bulk viscosity play an important role. A model of the spherical satellite tobacco mosaic virus consisting of outer solid layers with a water core is also investigated, and the viscosity of the water core is found to significantly damp the free vibrational modes. The same approach can be applied for nonspherical geometries and also to viscoelastic nanoparticles.  相似文献   

12.
We synthesized core/shell-typed magnetic nanoparticle composites using poly(methyl methacrylate) (PMMA) as a shell and magnetite nanoparticle (MN) as a core, in which the PMMA shell was prepared via atomic transfer radical polymerization (ATRP) method. Chemical structure and morphology of the synthesized MN–PMMA nanocomposite were investigated using FT-IR and TEM, respectively. Magnetorheological (MR) fluid was prepared by dispersing synthesized MN–PMMA in non-magnetic medium. Both shear stress and shear viscosity of the MR fluids as a function of shear rate were measured using a rotational rheometer with a magnetic field generator, exhibiting that a yield stress increased with an external magnetic field strength.  相似文献   

13.
Widely known Gibbs' relationship predicting a difference of chemical potentials in a small solid particle and in a surrounding fluid phase at equilibrium is shown to refer to a real or imaginary bulk phase inside the particle. A similar relationship derived for the real surface monolayer of a nanoparticle exhibits the equality of chemical potentials at equilibrium, which allows for experimental measurement of the surface chemical potential of a dissolving solid nanoparticle.  相似文献   

14.
By regarding the neutral thermosensitive hydrogel as a biphasic mixture media, an incompressible deformable porous solid skeleton, and an incompressible interstitial fluid phase saturating the interconnected space, a novel biphasic mixture theory for modeling the nonlinear large deformation kinetics of the volume phase transition was developed from the first law of thermodynamics and the continuum mixture theory. The governing equations consist of the saturated continuity equation, the momentum equations of the fluid, and the momentum equations of the bulk hydrogel. The explicit expressions of the constitutive relationships, which are capable of characterizing the nonlinear large deformation kinetics of the volume phase transition of the N-isopropylacrylamide thermosensitive hydrogels, were derived from the Helmholtz free energy formed by the elastic and mixing contributions. Both the governing equations and the constitutive relationships are in the Lagrangian framework, and special attention was paid to the deformable porous solid skeleton.  相似文献   

15.
Dynamics of fracture in drying suspensions   总被引:1,自引:0,他引:1  
We investigate the dynamics of fracture in drying films of colloidal silica. Water loss quenches the nanoparticle dispersions to form a liquid-saturated elastic network of particles that relieves drying-induced strain by cracking. These cracks display intriguing intermittent motion originating from the deformation of arrested crack tips and aging of the elastic network. The dynamics of a single crack exhibits a universal evolution, described by a balance of the driving elastic power with the sum of interfacial power and the viscous dissipation rate of flowing interstitial fluid.  相似文献   

16.
Hydrogel‐containing core–shell capsules are useful as drug delivery vehicles for many biomedical applications, especially when release of incorporated guests can be controlled. Here, we developed a one‐step organic solvent‐free method to prepare such core–shell capsules using a synthetic and a natural supramolecular hydrogel, for the core and shell, respectively. A solution containing ureido‐pyrimidinone modified poly(ethylene glycol) hydrogelators and calcium chloride was drop‐wise added to an alginate solution, yielding core–shell structures. It was found that the outer shell provides a confined space for the inner supramolecular hydrogel and therefore prevents swelling of the core. This consequently slows down both erosion of the less stable core, and release of dextran guests.

  相似文献   


17.
Polymer membranes were used as biomimetic environments to study the effect of confinement on silica formation. Within membrane pores, silica tubes were formed, consisting of a dense silica shell incorporating nanoparticle aggregates. The shell structure does not depend on the membrane pore size, suggesting that its formation proceeds via interfacial interactions with the pore surface. In contrast, the size of primary nanoparticles within core aggregates is influenced by pore dimensions, indicating an effect of confinement on the diffusion-limited growth of silica. A parallel can be drawn with reported roles of confinement in biomineralization processes, providing a basis for future developments in biosilicification mimetic approaches and biofunctional nanomaterials design.  相似文献   

18.
Silver–polypyrrole (PPy) core–shell nanoparticles have been fabricated by a facile one-step “green” synthesis using silver nitrate as an oxidant and soluble starch as an environmentally benign stabilizer and co-reducing agent. The morphology and optical properties of the particles were significantly affected by the reaction temperature, soluble starch concentration, and ratio of pyrrole monomer to AgNO3 oxidant. The core–shell nanoparticles exhibited outstanding dispersive properties in deionized water due to residual starch, as compared with PPy nanoparticles in which starch was absent. The mechanism of core–shell nanoparticle formation was elucidated through TEM imaging vs. reaction time. The colloidal and chemical stability of the nanoparticles was demonstrated in a variety of solvents, including acids, bases, and ionic and organic solvents, through monitoring the localized surface plasmon resonance of the nanoparticles. Furthermore, the catalytic properties of these silver–PPy core–shell nanoparticles were also demonstrated.
Figure
Schematic illustration of silver-PPy core-shell nanoparticle formation and methylene blue (MB) reduction using the core-shell nanoparticles as a catalyst.  相似文献   

19.
The mechanical characteristics of bacterially synthesized nano-cellulose (BNC) were studied with uniaxial compression and tensile tests. Compressive loads result in a release of water and the deformation of the water-saturated network corresponds approximately to the volume of released water. The BNC hydrogel exhibits a mainly viscous response under compression. The strain response under tensile loads has an elastic and a viscous component. This can be described with a Maxwell model, where the viscosity is strain rate-dependent. When the aqueous phase of the BNC hydrogel is stabilized with an additional alginate hydrogel matrix, the system exhibits an elastic response under compressive loads. The analysis of the ‘alginated’ BNC network with the Maxwell model shows that the alginate matrix increases the viscosity of the composite system. The results of the mechanical tests show that the water absorbed in the BNC hydrogel strongly influences its mechanical behavior.  相似文献   

20.
The use of nanoparticles within living systems is a growing field, but the long‐term effects of introducing nanoparticles to a biological system are unknown. If nanoparticles remain localized after in vivo implantation unanticipated side effects due to unknown biodistribution can be avoided. Unfortunately, stabilization and retention of nanoparticles frequently alters their function.[1] In this work multiple hydrogel platforms are developed to look at long‐term localization of nanoparticle sensors with the goal of developing a sensor platform that will stabilize and localize the nanoparticles without altering their function. Two different hydrogel platforms are presented, one with a liquid core of sensors and another with sensors decorating the hydrogel's exterior, that are capable of localizing the nanoparticles without inhibiting their function. With the use of these new hydrogel platforms nanoparticle sensors can be easily implanted in vivo and utilized without concerns of nanoparticle impact on the animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号