首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present solutions of seven graph equations involving the line graph, complement and n-th power operations. One such equation L(G)n=G? generalizes a result of M. Aigner. In addition, some comments are made about graphs satisfying Gn=G?.  相似文献   

2.
Let G be a cubic graph of order 2n consisting of a cycle plus a perfect matching and let G1 be the symmetric digraph obtained from G by replacing each edge of G by two opposite arcs. In this paper we study when G1 can be decomposed into three hamiltonian circuits and in particular we prove that such a decomposition is impossible if n is even.  相似文献   

3.
An elementary proof is given of the author's transformation formula for the Lambert series Gp(x) = Σn?1 n?pxn(1?xn) relating Gp(e2πiτ) to Gp(e2πiAτ), where p > 1 is an odd integer and Aτ = (aτ + b)(cτ + d) is a general modular substitution. The method extends Sczech's argument for treating Dedekind's function log η(τ) = πiτ12 ? G1(e2πiτ), and uses Carlitz's formula expressing generalized Dedekind sums in terms of Eulerian functions.  相似文献   

4.
5.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

6.
Let (A, G, α) be a C1-dynamical system, where G is abelian, and let φ be an invariant state. Suppose that there is a neighbourhood Ω of the identity in G? and a finite constant κ such that Πi = 1n φ(xi1xi) ? κ Πi = 1n φ(xixi1) whenever xi lies in a spectral subspace Rαi), where Ω1 + … + Ωn ? Ω. This condition of complete spectral passivity, together with self-adjointness of the left kernel of φ, ensures that φ satisfies the KMS condition for some one-parameter subgroup of G.  相似文献   

7.
A generalized Room square G of order n and degree k is an n?1k?1 × n?1k?1 array, each cell of which is either empty or contains an unordered k-tuple of a set S, |S| = n, such that each row and each column of the array contains each element of S exactly once and G contains each unordered k-tuple of S exactly once. Using a class of Steiner systems and a generalized Room square of order 18 and degree 3 constructed by ad hoc methods, an infinite class of degree 3 squares is constructed.  相似文献   

8.
The graph G has star number n if any n vertices of G belong to a subgraph which is a star. Let f(n, k) be the smallest number m such that the complete graph on m vertices can be factorized into k factors with star number n. In the present paper we prove that c1nk ≤ f(n, k) < c2nk.  相似文献   

9.
If Ω denotes an open subset of Rn (n = 1, 2,…), we define an algebra g (Ω) which contains the space D′(Ω) of all distributions on Ω and such that C(Ω) is a subalgebra of G (Ω). The elements of G (Ω) may be considered as “generalized functions” on Ω and they admit partial derivatives at any order that generalize exactly the derivation of distributions. The multiplication in G(Ω) gives therefore a natural meaning to any product of distributions, and we explain how these results agree with remarks of Schwartz on difficulties concerning a multiplication of distributions. More generally if q = 1, 2,…, and ?∈OM(R2q)—a classical Schwartz notation—for any G1,…,GqG(σ), we define naturally an element ?G1,…,Gq∈G(σ). These results are applied to some differential equations and extended to the vector valued case, which allows the multiplication of vector valued distributions of physics.  相似文献   

10.
Suppose that a statistical decision problem is invariant under a group of transformations g?G. T (X) is equivariant if there exists g1 ? G1 such that T(g(X)) = g1(T((X)). We show that the minimal sufficient statistic is equivalent and that if T(X) is an equivariant sufficient statistics and d(X) is invariant under G, then d1(T) = Ed(X)∥T is invariant under G1.  相似文献   

11.
We show that in the evolution of the random d-uniform hypergraph Gd(n,M) the phase transition occurs when M=n/d(d−1)+O(n2/3). We also prove local limit theorems for the distribution of the size of the largest component of Gd(n,M) in the subcritical and in the early supercritical phase.  相似文献   

12.
Let G be a planar graph having n vertices with vertex degrees d1, d2,…,dn. It is shown that Σi=1ndi2 ≤ 2n2 + O(n). The main term in this upper bound is best possible.  相似文献   

13.
14.
In this paper we solve a conjecture of P. Erdös by showing that if a graph Gn has n vertices and at least 100kn1+1k edges, then G contains a cycle C2l of length 2l for every integer l ∈ [k, kn1k]. Apart from the value of the constant this result is best possible. It is obtained from a more general theorem which also yields corresponding results in the case where Gn has only cn(log n)α edges (α ≥ 1).  相似文献   

15.
16.
Let G be a semisimple noncompact Lie group with finite center and let K be a maximal compact subgroup. Then W. H. Barker has shown that if T is a positive definite distribution on G, then T extends to Harish-Chandra's Schwartz space C1(G). We show that the corresponding property is no longer true for the space of double cosets K\GK. If G is of real-rank 1, we construct liner functionals Tp ? (Cc(K\GK))′ for each p, 0 < p ? 2, such that Tp(f 1 f1) ? 0, ?f ? Cc(K\GK) but Tp does not extend to a continuous functional on Cp(K\GK). In particular, if p ? 1, Tv does not extend to a continuous functional on C1(K\GK). We use this to answer a question (in the negative) raised by Barker whether for a K-bi-invariant distribution T on G to be positive definite it is enough to verify that T(f 1 f1) ? 0, ?f ? Cc(K\GK). The main tool used is a theorem of Trombi-Varadarajan.  相似文献   

17.
The THOM isomorphism Theorem (1) allows an immediate extension to the strong shape category of compacta: The shape homology TBGn(X) with coefficient in a THOM spectrum turns out to be isomorphic to the bordism group ΩGn(X) which is defined like ΩGn(X) but with strong shape morphisms replacing continuous mappings (Theorem 1.2).  相似文献   

18.
The graph coloring problem is: Given a positive integer K and a graph G. Can the vertices of G be properly colored in K colors? The problem is NP-complete. The average behavior of the simplest backtrack algorithm for this problem is studied. Average run time over all graphs is known to be bounded. Average run time over all graphs with n vertices and q edges behaves like exp(Cn2q). It is shown that similar results hold for all higher moments of the run time distribution. For all graphs and for graphs where lim n2q exists, the run time has a limiting disibution as n → ∞.  相似文献   

19.
20.
An n-tournament is a complete labelled digraph on n vertices without loops or multiple arcs. A tournament's score sequence is the sequence of the out-degrees of its vertices arranged in nondecreasing order. The number Sn of distinct score sequences arising from all possible n-tournaments, as well as certain generalizations are investigated. A lower bound of the form
Sn > C14nn52
(C1 a constant) and an upper bound of the form Sn < C24nn2 are proved. A q-extension of the Catalan numbers
c1(q)=1 and cn(q)=i?1n?1ci(q)cn?1(q)qi(n?i?1)
is defined. It is conjectured that all coefficients in the polynomial Cn(q) are at most O(4nn3). It is shown that if this conjecture is true, then
Sn<C34nn52
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号