首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
横观各向同性电磁弹性固体耦合方程的一般解   总被引:4,自引:1,他引:3  
横观各向同性电磁弹性固体的耦合特征由5个关于弹性位移、电位和磁位的二阶偏微分方程控制.基于势函数理论,耦合的方程组被简化为5个非耦合的关于势函数的广义Laplace方程.弹性场和电磁场由势函数表示,这构成了横观各向同性电磁弹性固体的一般解.  相似文献   

2.
弹性支承-刚性转子系统同步全周碰摩的分岔响应   总被引:4,自引:0,他引:4  
基于航空发动机转子系统的结构特点,将航空发动机转子系统简化为一个非线性弹性支承的刚性转子系统.根据Lagrange方程建立了弹性支承-刚性不对称转子系统同步全周碰摩的运动方程;采用平均法进行求解,得到了关于系统振幅的分岔方程;根据两状态变量约束分岔理论,分别给出了系统在无碰摩和碰摩阶段参数平面的转迁集和分岔图,讨论了转子偏心、阻尼对系统分岔行为的影响;应用Liapunov稳定性理论分析了系统碰摩周期解的稳定性和失稳方式,给出了系统参数——转速平面上周期解的稳定范围;该文的研究结果对航空发动机转子系统的设计有一定的理论意义.  相似文献   

3.
蒙特卡罗方法在原子间多体势拟合中的应用   总被引:1,自引:0,他引:1  
蒙特卡罗方法是求解非线性方程组的一种有效的方法.我们采用F inn is-S incla ir型的嵌入原子势,并运用蒙特卡罗方法拟合了金属T a的平衡晶格常数、结合能、弹性常数、空位形成能,给出了此元素的多体势函数的参数.  相似文献   

4.
突变理论应用于腔室火灾中的回燃现象   总被引:6,自引:0,他引:6       下载免费PDF全文
回燃是在通风受限的建筑火灾中,由于补充新鲜空气再次燃烧热烟气的现象.这种转捩现象是典型的突变行为.该文基于能量平衡方程建立了腔室火灾中回燃现象的简化数学模型,并利用突变理论建立了其突变拓扑空间函数方程,讨论了系统控制因子与工况状态之间的对应关系.结果表明回燃现象的突变形式是燕尾突变,并可依据其分岔集确定回燃现象的产生与否.  相似文献   

5.
研究了不可压饱和多孔弹性杆的一维动力响应问题.基于多孔介质理论,在流相和固相微观不可压、固相骨架小变形的假定下,建立了不可压流体饱和多孔弹性杆一维轴向动力响应的数学模型.利用Hamilton空间体系的多辛理论,构造了不可压饱和多孔弹性杆轴向振动方程的多辛形式及其多种局部守恒律.采用中点Box离散方法得到轴向振动方程的多辛离散格式和局部能量守恒律以及局部动量守恒律的离散格式;数值模拟了不可压饱和多孔弹性杆的轴向振动过程,记录了每一时间步的局部能量数值误差和局部动量数值误差.结果表明,已构造的多辛离散格式具有很高的精确性和较长时间的数值稳定性,这为解决饱和多孔介质的动力响应问题提供了新的途径.  相似文献   

6.
浅拱采用竖向、转动方向弹性约束时,自振频率和模态与理想的铰支/固结边界存在差异,不同约束刚度将改变外激励下的非线性响应及各种分岔产生的参数域.由浅拱基本假定建立无量纲动力学方程, 采用在频率和模态中考虑约束刚度大小的方法,通过Galerkin全离散和多尺度摄动分析导出极坐标、直角坐标形式的平均方程, 其中方程系数与约束刚度一一对应.用数值方法分析了周期激励下竖向弹性约束系统最低两阶模态之间1∶2内共振时的动力行为, 所得结果与有限元的对比以及平均方程系数的收敛性证明了所采用方法是可行的.随着激励幅值、频率的变化存在若干分岔点,分岔发生时的参数分布与约束刚度值有关,在由分岔点连接的不稳定区或共振区附近,存在一系列稳态解、周期解、准周期解和混沌解窗口,且随参数的变化可观测到倍周期分岔.  相似文献   

7.
本文把文[1]建立的多夹层壳体的中小转动一阶大挠度理论,具体地运用到多夹层扁壳中去给出了正交异性材料的多夹层扁壳的大挠度问题平衡方程和边界条件及其特例,宏观各向同性材料多夹层扁壳的大挠度方程.  相似文献   

8.
用数学弹性力学的方法研究弹性体的稳定问题   总被引:2,自引:0,他引:2  
用数学弹性力学的方法研究弹性体的稳定问题,是一个重要而困难的课题.B.B.Hовожилов在文献[1]中给出了平衡方程和边界条件,由于数学上的困难,没有给出具体问题的解.A.Ю.Ишлынский[2]用数学弹性力学的方法解决了两边简支的无限宽平板当两边均匀受压时,在平面应变条件下的弹性稳定问题.他说:“从Hовожилов方程的观点看来,我们在平衡方程中忽略了转动分量,同时在边界条件中保存了转动的因素”,以克服数学上的困难.由于引入了一些简化带来了一些误差,他所得的临界载荷略微高于经典理论给出的临界载荷.К.ф.Войцеховская[3,4]采用Ишлынский的方法,获得了两端简支的圆杆和圆柱壳在轴压作用下的临界载荷,也略微高于经典理论给出的临界载荷.从弹性理论的观点看来,他们的结果是不够严格的.本文采用Hовожилов的平衡方程和边界条件,采用胡海昌[6]的位移函数用以简化微分方程组,克服了数学上的困难,解得了[2-4]中求解过的几个稳定问题,得到的临界载荷略微低于经典理论给出的临界载荷.从数学弹性力学的观点看来,它是严格的.  相似文献   

9.
采用集中质量法,建立了多间隙二级齿轮系统的五自由度非线性振动模型.模型考虑了各齿轮副间变刚度、齿侧间隙、支承间隙以及传动误差等非线性因素,推导出系统量纲振动微分方程,并利用分岔图、Poincaré截面图,全面地分析了系统转速、阻尼比对系统分岔特性的影响.结果发现系统在各种非线性因素的综合影响下,表现出丰富复杂的分岔特性.系统随着参数的变化先后出现短周期运动、长周期运动、拟周期运动及混沌运动.在不同阻尼比下,系统随着转速的逐渐减小,由稳定的周期1运动,倍化分岔变为稳定的周期2运动,再经过Hopf分岔变为拟周期运动,通过激变又变为稳定的周期1运动,最终通过Hopf分岔-锁相进入混沌.随着转速的逐渐增大,系统随阻尼比变化的混沌运动范围减小,出现稳定的周期1运动、长周期和拟周期运动,并且长周期和拟周期运动范围逐渐变小而稳定的周期1运动的范围逐渐变大.  相似文献   

10.
导电薄板的磁弹性组合共振分析   总被引:2,自引:0,他引:2  
基于Mexwell方程,给出了导电薄板的非线性磁弹性振动方程、电动力学方程和电磁力表达式.在此基础上,研究了横向磁场中梁式导电薄板的磁弹性组合共振问题,应用Galerkin法导出了相应的非线性振动微分方程组.利用多尺度法进行求解,得到了系统稳态运动下的幅频响应方程,分析了组合共振激发的条件.根据Liapunov近似稳定性理论,对稳态解的稳定性进行了分析,得到了稳定性的判定条件.通过数值计算,给出了一、二阶模态下共振振幅随调谐参数、激励幅值和磁场强度的变化规律曲线图,以及系统振动的时程响应图、相图、Poincare映射图和频谱图,进一步分析了电磁、机械等参量对解的稳定性及分岔特性的影响,并讨论了系统的倍周期和概周期等复杂动力学行为.  相似文献   

11.
We give a brief discussion of the relations between elementary catastrophe theory, general catastrophe theory, singularity theory, bifurcation theory, and topological dynamics. This is intended to clarify the status, and potential applicability, of “catastrophe theory,” a phrase used by different authors and at different times with different meanings. Catastrophe theory has often been criticized for (supposed) applicability only to gradient systems of differential equations; but properly speaking this criticism can apply only to the elementary version of the theory (where it is in any case wrong). Roughly speaking, elementary catastrophe theory deals with the singularities of real-valued functions, general catastrophe theory with singularities of flows. Between these lies singularity theory, which deals with vector-valued functions. All relate strongly to bifurcation theory and topological dynamics. The issue is more subtle than it appears to be, and we describe an example where elementary catastrophe theory has been used to solve a long-standing problem about nongradient flows: degenerate Hopf bifurcation.  相似文献   

12.
运用燕尾突变理论,以物流能力为状态变量,物流流量变化率、流速变化率和时间变化率为控制变量,建立应急物流能力突变模型,运用势函数确定了分岐点集,讨论了应急物流能力的突变临界点及稳定性,并用算例分析模型应用的可行性.最后得出三点结论:根据实测及调查数据可以确定三个控制变量的值,从而确定控制点在分歧点集的区域;通过计算分析可以确定应急物流能力在分岐点集各区域的奇点个数和性质;其突变方向和可能性随之可以确定:控制点从奇点多的区域向奇点少的区域移动,应急物流能力发生突变的可能性大,反之可能性小,甚至不发生突变.因此把握控制点在分岐点集中的变化方向和规律,采取相应措施改变相应控制变量,可以提升或稳定应急物流能力.  相似文献   

13.
In this paper, a simplified congestion control model is considered to study the quasiperiodic motion induced by heterogenous time delays. Analysis for the stability of the equilibrium shows that the Hopf bifurcation curves with diverse frequencies may intersect at the so-called non-resonant double Hopf bifurcation point. Choosing the delays as the bifurcation parameters and employing the method of multiple scales, the amplitude–frequency equations or normal form equations are obtained theoretically. Based on these equations, the dynamics near the bifurcation point is classified. The values of the delays for which the quasiperiodic motion exists can be predicted with an acceptable accuracy. This result provides a reference in designing and optimizing the network systems.  相似文献   

14.
Lyapunov's second method is used to investigate the stability of the rectilinear equilibrium modes of a non-linearly elastic thin rod (column) compressed at its end. Stability here is implied relative to certain integral characteristics, of the type of norms in Sobolev spaces; the analysis is carried out for all values of the problem parameter except the bifurcation values.

The realm of problems connected with the Lagrange-Dirichlet equilibrium stability theorem and its converse involves specific difficulties when considered in the infinite-dimensional case: stability in infinite-dimensional systems is investigated relative to certain integral characteristics such as norms /1/, and as the latter may be chosen with a certain degree of arbitrariness, different choices may result in different stability results. On the other hand, there is no relaxation of any of the difficulties encountered in the case of a finite number of degrees of freedom.

We shall consider a certain natural mechanical system with a finite number of degrees of freedom. If the first non-trivial form of the potential energy expansion is positive-definite, the equilibrium position is stable. A similar statement has been proved for infinitely many dimensions as well /1–3/, using Lyapunov's direct method, and the total energy may play the role of the Lyapunov function.

The situation with respect to instability is more complex. In the finite-dimensional case, if the first non-trivial form of the potential energy expansion may take negative values, instability may be demonstrated in many cases by means of a function proposed by Chetayev in /4/. A general theorem has been proved /1/ for instability in infinitely many dimensions, relying on an analogue of Chetayev's function. Such functions have also been used /5, 6/ to prove the instability of equilibrium in specific linear systems with an infinite number of degrees of freedom.

However, Chetayev's functions /4/ are not suitable tools to prove the instability of equilibrium in most non-linear systems. Another “Chetayev function”, which is actually a perturbed form of Chetayev's original function from /4/, has been proposed /7/, and it has been used to prove instability when the equilibrium position is an isolated critical point of the first non-trivial form of the potential energy expansion.

The majority of problems concerning the onset of instability of equilibrium configurations of elastic systems have been considered from a quasistatic point of view (see, e.g., /8, 9/). Problems of elastic stability and instability were considered in a dynamical setting in /2, 5/, where stability was investigated by Lyapunov's direct method. However, most of the results obtained in this branch of the field concern linear systems, and there are extremely few publications dealing with the onset of instability in non-linear elastic systems using Lyapunov's direct method. This is because in an unstable elastic system the quadratic part of the potential energy may change sign, and therefore the analogues of Chetayev's function from /4/ are not usually suitable for solving these problems. Dynamic instability has been studied or a specific non-linearly elastic system /10/, with the fact of instability established by using an analogue of the Chetayev function from /7/.

This paper presents one more example of a study of dynamic instability crried out for a non-linearly elastic system by Lyapunov's direct method.  相似文献   


15.
采用复变函数理论和边界配置方法,分析计算了Kirchhoff板的弯曲断裂问题.假设了位移及内力的复变函数式,它们能满足一系列的基本方程和支配条件,例如域内的平衡方程、裂纹表面的边界条件、裂纹尖端的应力奇异性质.这样,仅板边界的边界条件需要考虑.它们可用边界配置法和最小二乘法近似满足.对不同边界条件和载荷情形进行了分析计算.数值算例表明,本文方法精度较高,计算量小,是一种有效的半解析、半数值计算方法.  相似文献   

16.
For a 2 d.o.f. Hamiltonian system we prove the Lyapunov stability of its equilibrium with two double pure imaginary eigenvalues and non-semisimple Jordan form for the linearization matrix, when some coefficient in the 4th order normal form is positive (the equilibrium is known to be unstable, if this coefficient is negative). Such the degenerate equilibrium is met generically in one-parameter unfoldings, the related bifurcation is called to be the Hamiltonian Hopf Bifurcation. Though the stability is known since 1977, proofs that were published are either incorrect or not complete. Our proof is based on the KAM theory and a work with the Weierstrass elliptic functions, estimates of power series and scaling.   相似文献   

17.
Based on the availability of prey and a simple predator–prey model, we propose a delayed predator–prey model with predator migration to describe biological control. We first study the existence and stability of equilibria. It turns out that backward bifurcation occurs with the migration rate as bifurcation parameter. The stability of the trivial equilibrium and the boundary equilibrium is delay-independent. However, the stability of the positive equilibrium may be delay-dependent. Moreover, delay can switch the stability of the positive equilibrium. When the positive equilibrium loses stability, Hopf bifurcation can occur. The direction and stability of Hopf bifurcation is derived by applying the center manifold method and the normal form theory. The main theoretical results are illustrated with numerical simulations.  相似文献   

18.
This paper presents a new approach to the analysis of asymptotic stability of artificial neural networks (ANN) with multiple time-varying delays subject to polytope-bounded uncertainties. This approach is based on the Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique with the use of a recent Leibniz–Newton model based transformation without including any additional dynamics.Three examples with numerical simulations are used to illustrate the effectiveness of the proposed method. The first example considers the neural network with multiple time-varying delays, which may be seen as a particular case of the second example where it is subject to uncertainties and multiple time-varying delays. Finally, the third example analyzes the stability of the neural network with higher numbers of neurons subject to a single time-delay. The Hopf bifurcation theory is used to verify the stability of the system when the origin falls into instability in the bifurcation point.  相似文献   

19.
The distinctive features of the loss of stability of elastic solids which undergo phase transitions are investigated for the case of small deformations. The non-uniqueness of the solution of the boundary-value problem for the describing of the thermodynamic equilibrium of a two-phase body is caused by the non-linearity associated with the unknown interface. The solution can be chosen by comparing the potential energies of the body in the two-phase and single phase states and by analysing of the local stability of the two-phase states. A linearized boundary-value problem is formulated which describes infinitesimal small perturbations of an initial two-phase state which is in thermodynamic equilibrium. Analysis of the stability of the two-phase state reduces to an investigation of the bifurcation points and the behaviour of the small solutions of the system of integrodifferential equations in terms of functions describing the perturbations of the interface. The problem of the non-uniqueness and loss of stability of centrisymmetric equilibrium two-phase deformations is investigated as an example. A theorem concerning the number of centrisymmetric solutions is proved. The energy changes accompanying the formation and development of two-phase states and the stability of the solutions obtained are investigated. The concept of topological instability as a bifurcation is introduced, as a result of which the type of geometry of a solution of the boundary-value problem changes and surfaces of separation of the phases actually appear and disappear. Macrodiagrams of the deformational are constructed which demonstrate the effect of deformation softening in the path of a phase transition.  相似文献   

20.
In this paper a system of three delay differential equations representing a Hopfield type general model for three neurons with two-way (bidirectional) time delayed connections between the neurons and time delayed self-connection from each neuron to itself is studied. Delay independent and delay dependent sufficient conditions for linear stability, instability and the occurrence of a Hopf bifurcation about the trivial equilibrium are addressed. The partition of the resulting parametric space into regions of stability, instability, and Hopf bifurcation in the absence of self-connection is realized. To extend the local Hopf branches for large delay values a particular bidirectional delayed tri-neuron model without self-connection is investigated. Sufficient conditions for global existence of multiple non-constant periodic solutions are obtained for such a model using the global Hopf-bifurcation theorem for functional differential equations due to J. Wu and the Bendixson criterion for higher dimensional ordinary differential equations due to Li and Muldowney, and following the approach developed by Wei and Li.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号